1.The CSV that contains data(ie. text description) along with categorized labels
df = pd.read_csv('./output/csv_sanitized_16_.csv', dtype=str)
X = df['description_plus']
y = df['category_id']
2.This CSV contains unseen data(ie. text description) for which labels need to be predicted
df_2 = pd.read_csv('./output/csv_sanitized_2.csv', dtype=str)
X2 = df_2['description_plus']
Cross validation function that operates on the training data(item #1) above.
def cross_val():
cv = KFold(n_splits=20)
vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5,
stop_words='english')
X_train = vectorizer.fit_transform(X)
clf = make_pipeline(preprocessing.StandardScaler(with_mean=False), svm.SVC(C=1))
scores = cross_val_score(clf, X_train, y, cv=cv)
print(scores)
print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))
cross_val()
I need to know how to pass the unseen data(item #2) to the cross validation function and how to predict the labels?
Using scores = cross_val_score(clf, X_train, y, cv=cv)
you can only get the cross-validated scores of the model. cross_val_score
will internally split the data into training and testing based on the cv
parameter.
So the values that you get are the cross-validated accuracy of the SVC.
To get the score on the unseen data, you can first fit the model e.g.
clf = make_pipeline(preprocessing.StandardScaler(with_mean=False), svm.SVC(C=1))
clf.fit(X_train, y) # the model is trained now
and then do clf.score(X_unseen,y)
The last will return the accuracy of the model on the unseen data.
from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
# load some data
iris = datasets.load_iris()
X, y = iris.data, iris.target
#split data to training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
# hyperparameter tunig of the SVC model
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svc = svm.SVC()
# fit the GridSearch using the TRAINING data
grid_searcher = GridSearchCV(svc, parameters)
grid_searcher.fit(X_train, y_train)
#recover the best estimator (best parameters for the SVC, based on the GridSearch)
best_SVC_model = grid_searcher.best_estimator_
# Now, check how this best model behaves on the test set
cv_scores_on_unseen = cross_val_score(best_SVC_model, X_test, y_test, cv=5)
print(cv_scores_on_unseen.mean())