I want to fit a set of data points with a polynomial function (what I normally do with numpy.polyfit), but I want to let the user choose interactively the degree of the polynomial. Here's an example of what I'm trying to do:
import sys
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
from sklearn.metrics import mean_squared_error
fig, ax = plt.subplots()
x = np.arange(1,10,0.2)
y = np.sin(x)
ax.plot(x,y,'o',color='orange',markeredgewidth=0.3,markeredgecolor='k')
ax.set_xlim(0,10)
ax.set_ylim(-1.1,1.1)
def press(event):
#fig.clf()
fig.canvas.draw_idle()
sys.stdout.flush()
deg = int(event.key)
coeffs = np.polyfit(x,y,deg)
p = np.poly1d(coeffs)
rms = sqrt(mean_squared_error(y, p(x)))
fig.text(0.8,1.02, 'rms='+str(round(rms,4)), rotation=0, color='k',transform=ax.transAxes)
with open('prova.txt', 'w') as filehandle:
filehandle.write('#Coefficients for a n= '+str(deg)+' polynomial fit\n\n')
for listitem in coeffs:
filehandle.write('%s\n' % listitem)
ln = plt.plot(x,p(x),'-',color='green',linewidth=0.8,zorder=0)
fig.canvas.draw()
cid = fig.canvas.mpl_connect('key_press_event', press)
plt.show()
fig.canvas.mpl_disconnect(cid)
f = open('prova.txt','r')
cfs = loadtxt('prova.txt', usecols=(0),comments='#')
print(cfs)
In this way it is effectively possible to fit the points, but the plots following the first one are overplotted. If I drop the '#' for fig.clf() the code updates the fit but cancel the dots.
At start create global variable with None
txt = None
ln = None
And inside press()
you can check if you already assigned plot
and text
and remove()
it.
global txt
global ln
if txt:
txt.remove()
txt = fig.text(0.8,1.02, 'rms='+str(round(rms,4)), rotation=0, color='k',transform=ax.transAxes)
if ln:
ln[0].remove()
ln = plt.plot(x,p(x),'-',color='green',linewidth=0.8,zorder=0)
fig.canvas.draw()
Or you can set new data
and text
global txt
global ln
if txt:
# replace text
txt.set_text('rms={}'.format(round(rms,4)))
else:
# create first time
txt = fig.text(0.8, 1.02, 'rms={}'.format(round(rms,4)), rotation=0, color='k', transform=ax.transAxes)
if ln:
# replace data
ln[0].set_data(x, p(x))
else:
# create first time
ln = plt.plot(x, p(x), '-', color='green', linewidth=0.8, zorder=0)
fig.canvas.draw()
Full code
import sys
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
from sklearn.metrics import mean_squared_error
# --- functions ---
def press(event):
global txt
global ln
#fig.clf()
fig.canvas.draw_idle()
sys.stdout.flush()
deg = int(event.key)
coeffs = np.polyfit(x, y, deg)
p = np.poly1d(coeffs)
rms = sqrt(mean_squared_error(y, p(x)))
with open('prova.txt', 'w') as filehandle:
filehandle.write('#Coefficients for a n= {} polynomial fit\n\n'.format(deg))
for listitem in coeffs:
filehandle.write('{}\n'.format(listitem))
if txt:
txt.remove()
txt = fig.text(0.8, 1.02, 'rms={}'.format(round(rms,4)), rotation=0, color='k', transform=ax.transAxes)
if ln:
ln[0].remove()
ln = plt.plot(x, p(x), '-', color='green', linewidth=0.8, zorder=0)
#if txt:
# txt.set_text('rms={}'.format(round(rms,4)))
#else:
# txt = fig.text(0.8, 1.02, 'rms={}'.format(round(rms,4)), rotation=0, color='k', transform=ax.transAxes)
#if ln:
# ln[0].set_data(x, p(x))
#else:
# ln = plt.plot(x, p(x), '-', color='green', linewidth=0.8, zorder=0)
fig.canvas.draw()
# --- main ---
txt = None
ln = None
fig, ax = plt.subplots()
x = np.arange(1, 10, 0.2)
y = np.sin(x)
ax.plot(x, y, 'o', color='orange', markeredgewidth=0.3, markeredgecolor='k')
ax.set_xlim(0, 10)
ax.set_ylim(-1.1, 1.1)
cid = fig.canvas.mpl_connect('key_press_event', press)
plt.show()
#fig.canvas.mpl_disconnect(cid)
cfs = loadtxt('prova.txt', usecols=0, comments='#')
print(cfs)