How can I make the Groupby Apply run faster, or how can I write it a different way?
import numpy as np
import pandas as pd
df = pd.DataFrame({'ID':[1,1,1,1,1,2,2,2,2,2],\
'value':[1,2,np.nan,3,np.nan,1,2,np.nan,4,np.nan]})
result = df.groupby("ID").apply(lambda x: len(x[x['value'].notnull()].index)\
if((len(x[x['value']==1].index)>=1)&\
(len(x[x['value']==4].index)==0)) else 0)
output:
Index 0
1 3
2 0
My program runs very slow right now. Can I make it faster? I have in the past filtered before using groupby() but I don't see an easy way to do it in this situation.
Not sure if this is what you need. I have decomposed it a bit, but you can easily method-chain it to get the code more compact:
df = pd.DataFrame(
{
"ID": [1, 1, 1, 1, 1, 2, 2, 2, 2, 2],
"value": [1, 2, np.nan, 3, np.nan, 1, 2, np.nan, 4, np.nan],
}
)
df["x1"] = df["value"] == 1
df["x2"] = df["value"] == 4
df2 = df.groupby("ID").agg(
y1=pd.NamedAgg(column="x1", aggfunc="max"),
y2=pd.NamedAgg(column="x2", aggfunc="max"),
cnt=pd.NamedAgg(column="value", aggfunc="count"),
)
df3 = df2.assign(z=lambda x: (x['y1'] & ~x['y2'])*x['cnt'])
result = df3.drop(columns=['y1', 'y2', 'cnt'])
print(result)
which will yield
z
ID
1 3
2 0