Search code examples
pythonk-meansdaskrapids

MultiGPU Kmeans clustering with RAPIDs freezes


I am new into Python and Rapids.AI and I am trying to recreate SKLearn KMeans in a multinode GPU (I have 2 GPUs) using Dask and RAPIDs (I am using rapids with its docker, which mounts a Jupyter Notebook too).

The code I show below (also I show an example of the Iris dataset) freezes and the jupyter notebook cell is never ended. I tried to use %debug magic key and also Dask dashboard but I did not draw any clear conclusions (the only conclusion I think that could due to device_m_csv.iloc, but I am not sure about it). Another thing that could be is I am forgetting some wait() or compute() or persistent() (really, I am not sure on what occasions they should be used correctly).

I will explain the code, for a better reading:

  • First of all, do needed imports
  • Next, starts with KMeans algorithm (delimiter: #######################...)
  • Create a CUDA cluster with 2 workers, one per GPU (I have 2 GPUs) and 1 thread for worker (I have read this is the recommended value) and start a client
  • Read dataset from CSV making 2 partitions (chunksize = '2kb')
  • Split previous dataset into data (more known as X) and labels ( (more known as y)
  • Instantiate cu_KMeans using Dask
  • Fit the model
  • Predict values
  • Check the obtained score

Sorry for not being able to offer more data, but I couldn't get it. Whatever is necessary to solve the doubt I will be happy to offer it.

Where or what can you think the problem is?.

Thank you very much in advance.

%%time

# Import libraries and show its versions
import numpy as np; print('NumPy Version:', np.__version__)
import pandas as pd; print('Pandas Version:', pd.__version__)
import sklearn; print('Scikit-Learn Version:', sklearn.__version__)
import nvstrings, nvcategory
import cupy; print('cuPY Version:', cupy.__version__)
import cudf; print('cuDF Version:', cudf.__version__)
import cuml; print('cuML Version:', cuml.__version__)
import dask; print('Dask Version:', dask.__version__)
import dask_cuda; print('DaskCuda Version:', dask_cuda.__version__)
import dask_cudf; print('DaskCuDF Version:', dask_cudf.__version__)
import matplotlib; print('MatPlotLib Version:', matplotlib.__version__)
import seaborn as sns; print('SeaBorn Version:', sns.__version__)
#import timeimport warnings

from dask import delayed
import dask.dataframe as dd
from dask.distributed import Client, LocalCluster, wait
from dask_ml.cluster import KMeans as skmKMeans
from dask_cuda import LocalCUDACluster

from sklearn import metrics
from sklearn.cluster import KMeans as skKMeans
from sklearn.metrics import adjusted_rand_score as sk_adjusted_rand_score, silhouette_score as sk_silhouette_score
from cuml.cluster import KMeans as cuKMeans
from cuml.dask.cluster.kmeans import KMeans as cumKMeans
from cuml.metrics import adjusted_rand_score as cu_adjusted_rand_score

# Configure matplotlib library
import matplotlib.pyplot as plt
%matplotlib inline

# Configure seaborn library
sns.set()
#sns.set(style="white", color_codes=True)
%config InlineBackend.figure_format = 'svg'

# Configure warnings
#warnings.filterwarnings("ignore")


####################################### KMEANS #############################################################
# Create local cluster
cluster = LocalCUDACluster(n_workers=2, threads_per_worker=1)
client = Client(cluster)

# Identify number of workers
n_workers = len(client.has_what().keys())

# Read data in host memory
device_m_csv = dask_cudf.read_csv('./DataSet/iris.csv', header = 0, delimiter = ',', chunksize='2kB') # Get complete CSV. Chunksize is 2kb for getting 2 partitions
#x = host_data.iloc[:, [0,1,2,3]].values
device_m_data = device_m_csv.iloc[:, [0, 1, 2, 3]] # Get data columns
device_m_labels = device_m_csv.iloc[:, 4] # Get labels column

# Plot data
#sns.pairplot(device_csv.to_pandas(), hue='variety');

# Define variables
label_type = { 'Setosa': 1, 'Versicolor': 2, 'Virginica': 3 } # Dictionary of variables type

# Create KMeans
cu_m_kmeans = cumKMeans(init = 'k-means||',
                     n_clusters = len(device_m_labels.unique()),
                     oversampling_factor = 40,
                     random_state = 0)
# Fit data in KMeans
cu_m_kmeans.fit(device_m_data)

# Predict data
cu_m_kmeans_labels_predicted = cu_m_kmeans.predict(device_m_data).compute()

# Check score
#print('Cluster centers:\n',cu_m_kmeans.cluster_centers_)
#print('adjusted_rand_score: ', sk_adjusted_rand_score(device_m_labels, cu_m_kmeans.labels_))
#print('silhouette_score: ', sk_silhouette_score(device_m_data.to_pandas(), cu_m_kmeans_labels_predicted))

# Close local cluster
client.close()
cluster.close()

Iris dataset example:

IrisDatasetExample


EDIT 1

@Corey, it is my ouput using your code:

NumPy Version: 1.17.5
Pandas Version: 0.25.3
Scikit-Learn Version: 0.22.1
cuPY Version: 6.7.0
cuDF Version: 0.12.0
cuML Version: 0.12.0
Dask Version: 2.10.1
DaskCuda Version: 0+unknown
DaskCuDF Version: 0.12.0
MatPlotLib Version: 3.1.3
SeaBorn Version: 0.10.0
Cluster centers:
           0         1         2         3
0  5.006000  3.428000  1.462000  0.246000
1  5.901613  2.748387  4.393548  1.433871
2  6.850000  3.073684  5.742105  2.071053
adjusted_rand_score:  0.7302382722834697
silhouette_score:  0.5528190123564102

Solution

  • I modified your reproducible example slightly and was able to produce an output on the most recent nightly of RAPIDS.

    This is the output of the script.

    (cuml_dev_2) cjnolet@deeplearn ~ $ python ~/kmeans_mnmg_reproduce.py 
    NumPy Version: 1.18.1
    Pandas Version: 0.25.3
    Scikit-Learn Version: 0.22.2.post1
    cuPY Version: 7.2.0
    cuDF Version: 0.13.0a+3237.g61e4d9c
    cuML Version: 0.13.0a+891.g4f44f7f
    Dask Version: 2.11.0+28.g10db6ba
    DaskCuda Version: 0+unknown
    DaskCuDF Version: 0.13.0a+3237.g61e4d9c
    MatPlotLib Version: 3.2.0
    SeaBorn Version: 0.10.0
    /share/software/miniconda3/envs/cuml_dev_2/lib/python3.7/site-packages/dask/array/random.py:27: FutureWarning: dask.array.random.doc_wraps is deprecated and will be removed in a future version
      FutureWarning,
    /share/software/miniconda3/envs/cuml_dev_2/lib/python3.7/site-packages/distributed/dashboard/core.py:79: UserWarning: 
    Port 8787 is already in use. 
    Perhaps you already have a cluster running?
    Hosting the diagnostics dashboard on a random port instead.
      warnings.warn("\n" + msg)
    bokeh.server.util - WARNING - Host wildcard '*' will allow connections originating from multiple (or possibly all) hostnames or IPs. Use non-wildcard values to restrict access explicitly
    Cluster centers:
               0         1         2         3
    0  5.883607  2.740984  4.388525  1.434426
    1  5.006000  3.428000  1.462000  0.246000
    2  6.853846  3.076923  5.715385  2.053846
    adjusted_rand_score:  0.7163421126838475
    silhouette_score:  0.5511916046195927
    

    And here is the modified script that produced this output:

        # Import libraries and show its versions
        import numpy as np; print('NumPy Version:', np.__version__)
        import pandas as pd; print('Pandas Version:', pd.__version__)
        import sklearn; print('Scikit-Learn Version:', sklearn.__version__)
        import nvstrings, nvcategory
        import cupy; print('cuPY Version:', cupy.__version__)
        import cudf; print('cuDF Version:', cudf.__version__)
        import cuml; print('cuML Version:', cuml.__version__)
        import dask; print('Dask Version:', dask.__version__)
        import dask_cuda; print('DaskCuda Version:', dask_cuda.__version__)
        import dask_cudf; print('DaskCuDF Version:', dask_cudf.__version__)
        import matplotlib; print('MatPlotLib Version:', matplotlib.__version__)
        import seaborn as sns; print('SeaBorn Version:', sns.__version__)
        #import timeimport warnings
    
        from dask import delayed
        import dask.dataframe as dd
        from dask.distributed import Client, LocalCluster, wait
        from dask_ml.cluster import KMeans as skmKMeans
        from dask_cuda import LocalCUDACluster
    
        from sklearn import metrics
        from sklearn.cluster import KMeans as skKMeans
        from sklearn.metrics import adjusted_rand_score as sk_adjusted_rand_score, silhouette_score as sk_silhouette_score
        from cuml.cluster import KMeans as cuKMeans
        from cuml.dask.cluster.kmeans import KMeans as cumKMeans
        from cuml.metrics import adjusted_rand_score as cu_adjusted_rand_score
        # Configure matplotlib library
        import matplotlib.pyplot as plt
    
        # Configure seaborn library
        sns.set()
        #sns.set(style="white", color_codes=True)
        # Configure warnings
        #warnings.filterwarnings("ignore")
    
    
        ####################################### KMEANS #############################################################
        # Create local cluster
        cluster = LocalCUDACluster(n_workers=2, threads_per_worker=1)
        client = Client(cluster)
    
        # Identify number of workers
        n_workers = len(client.has_what().keys())
    
        # Read data in host memory
        from sklearn.datasets import load_iris
    
        loader = load_iris()
    
        #x = host_data.iloc[:, [0,1,2,3]].values
        device_m_data = dask_cudf.from_cudf(cudf.from_pandas(pd.DataFrame(loader.data)), npartitions=2) # Get data columns
        device_m_labels = dask_cudf.from_cudf(cudf.from_pandas(pd.DataFrame(loader.target)), npartitions=2)
    
        # Plot data
        #sns.pairplot(device_csv.to_pandas(), hue='variety');
    
        # Define variables
        label_type = { 'Setosa': 1, 'Versicolor': 2, 'Virginica': 3 } # Dictionary of variables type
    
        # Create KMeans
        cu_m_kmeans = cumKMeans(init = 'k-means||',
                         n_clusters = len(np.unique(loader.target)),
                         oversampling_factor = 40,
                         random_state = 0)
        # Fit data in KMeans
        cu_m_kmeans.fit(device_m_data)
    
        # Predict data
        cu_m_kmeans_labels_predicted = cu_m_kmeans.predict(device_m_data).compute()
    
        # Check score
        print('Cluster centers:\n',cu_m_kmeans.cluster_centers_)
        print('adjusted_rand_score: ', sk_adjusted_rand_score(loader.target, cu_m_kmeans_labels_predicted.values.get()))
        print('silhouette_score: ', sk_silhouette_score(device_m_data.compute().to_pandas(), cu_m_kmeans_labels_predicted))
    
        # Close local cluster
        client.close()
        cluster.close()
    

    Can you please provide your output for the versions of these libraries? I would recommend also running the modified script and see if this runs successfully for you. If not, we can dive in further to find out if it's Docker-related, RAPIDS version related, or something else.

    If you have access to the command-prompt that's running your Jupyter notebook, it might be helpful to enable logging by passing in verbose=True when constructing the KMeans object. This can help us isolate where things are getting stuck.