I have implemented the following code
k_mean = KMeans(n_clusters=5,init=centroids,n_init=1,random_state=SEED).fit(X_input)
k_mean.cluster_centers_.shape
>>
(5, 50)
I have 5 clusters of the data.
How are the clusters ordered? Are the indices of the clusters centres representing the labels
?
Means does the cluster_center
index at 0th
position represent the label = 0 or not?
In the docs you have a smiliar example:
>>> from sklearn.cluster import KMeans
>>> import numpy as np
>>> X = np.array([[1, 2], [1, 4], [1, 0],
... [10, 2], [10, 4], [10, 0]])
>>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
>>> kmeans.labels_
array([1, 1, 1, 0, 0, 0], dtype=int32)
>>> kmeans.predict([[0, 0], [12, 3]])
array([1, 0], dtype=int32)
>>> kmeans.cluster_centers_
array([[10., 2.],
[ 1., 2.]])
The indexes are ordered yes. Btw with k_mean.cluster_centers_.shape
you only return the shape of your array, and not the values. So in your case you have 5 clusters, and the dimension of your features is 50.
To get the nearest point, you can have a look here.