import pandas as pd
import numpy as np
midx = pd.MultiIndex(levels = [['A', 'B'], ['x', 'y', 'z']],
codes = [[1, 1, 1, 0, 0, 0], [2, 1, 0, 2, 1, 0]])
df = pd.DataFrame([[0.8, 0.4, 0.3],
[0.6, 1.0, 0.1],
[0.1, 0.9, 0.5],
[0.4, 1.3, 0.6],
[0.3, 0.7, 0.4],
[2.3, 1.0, 0.2]], columns = ['K', 'L', 'M'], index = midx)
print(df)
K L M
B z 0.8 0.4 0.3
y 0.6 1.0 0.1
x 0.1 0.9 0.5
A z 0.4 1.3 0.6
y 0.3 0.7 0.4
x 2.3 1.0 0.2
I have multiindex dataframe in this structure and this is what I want to calculate:
df.loc['B', 'M'] = (df.loc['B', 'K'] + df.loc['A', 'K']).div(df.loc['B', 'L'] + df.loc['A', 'L'])
As a result of this process all values are NaN. How can I fix this?
There are missing values, because different index of a
and df.loc['B', 'M'].index
, solution is create MultiIndex
, e.g. by MultiIndex.from_product
:
a = (df.loc['B', 'K'] + df.loc['A', 'K']).div(df.loc['B', 'L'] + df.loc['A', 'L'])
a.index = pd.MultiIndex.from_product([['B'], a.index])
df.loc['B', 'M'] = a
print (df)
K L M
B z 0.8 0.4 0.705882
y 0.6 1.0 0.529412
x 0.1 0.9 1.263158
A z 0.4 1.3 0.600000
y 0.3 0.7 0.400000
x 2.3 1.0 0.200000
Another idea is converting to numpy array, but it should be risk if ordering of index in a
is different like df.loc['B', 'M'].index
, then should be assigned data in wrong order:
df.loc['B', 'M'] = a.to_numpy()
print (df)
K L M
B z 0.8 0.4 0.705882
y 0.6 1.0 0.529412
x 0.1 0.9 1.263158
A z 0.4 1.3 0.600000
y 0.3 0.7 0.400000
x 2.3 1.0 0.200000