Search code examples
pythondictionarytreedecision-treetree-traversal

Traverse decision tree based on values; iteratively going into sub-dictionaries?


I have a dictionary which represents a decision tree:

{'Outlook': {'Overcast': 'Yes', 'Rain': {'Wind': {'Strong': 'No', 'Weak': 'Yes'}}, 'Sunny': {'Temperature': {'Cool': 'Yes', 'Hot': 'No', 'Mild': 'No'}}}}

Visualized, it looks like below:

enter image description here

This tree was made with some training data and an ID3 algorithm; I wish to predict the decision for examples from my testing data:

Outlook   Temperature Humidity Wind    Decision
Sunny     Mild        Normal   Strong  Yes
Overcast  Mild        High     Strong  Yes
Overcast  Hot         Normal   Weak    Yes
Rain      Mild        High     Strong  No

Using the first example, a rough idea of the order things are checked:

Current dict 'outlook'
Examine 'outlook', found 'sunny':
  'sunny' is a dict, make current dict the 'sunny' subdict
  Examine 'temperature', found 'mild':
     'mild' is not a dict, return value 'no'  

I'm not sure how to traverse the dictionary like this, however. I've got some code to start with:

def fun(d, t):
    """
    d -- decision tree dictionary
    t -- testing examples in form of pandas dataframe
    """
    for _, e in t.iterrows():
        predict(d, e)

def predict(d, e):
    """
    d -- decision tree dictionary
    e -- a testing example in form of pandas series
    """
    # ?

In predict(), e can be accessed as a dictionary:

print(e.to_dict())
# {'Outlook': 'Rain', 'Temperature': 'Cool', 'Humidity': 'Normal', 'Wind': 'Weak', 'Decision': 'Yes'}
print(e['Outlook'])
# 'Rain'
print(e['Decision'])
# 'Yes'
# etc

I'm just not sure how to traverse the dict. I need to iterate over the testing example in the order attributes appear in the decision tree, not in the order they appear in the testing example.


Solution

    • You need to implement recursive solution to search until you reach a node with string value (that will be your leaf node with decision "Yes" or "No").
    import pandas as pd
    
    dt = {'Outlook': {'Overcast': 'Yes', 'Rain': {'Wind': {'Strong': 'No', 'Weak': 'Yes'}}, 'Sunny': {'Temperature': {'Cool': 'Yes', 'Hot': 'No', 'Mild': 'No'}}}}
    
    df = pd.DataFrame(data=[['Sunny', 'Mild', 'Normal', 'Strong', 'Yes']],columns=['Outlook', 'Temperature', 'Humidity', 'Wind', 'Decision'])
    
    def fun(d, t):
        """
        d -- decision tree dictionary
        t -- testing examples in form of pandas dataframe
        """
        res = []
        for _, e in t.iterrows():
            res.append(predict(d, e))
        return res
    
    def predict(d, e):
        """
        d -- decision tree dictionary
        e -- a testing example in form of pandas series
        """
        current_node = list(d.keys())[0]
        current_branch = d[current_node][e[current_node]]
        # if leaf node value is string then its a decision
        if isinstance(current_branch, str):
            return current_branch
        # else use that node as new searching subtree
        else:
            return predict(current_branch, e)
    
    print(fun(dt, df))
    

    output:

    ['No']