Search code examples
c++matlabpolynomialspolynomial-math

Is there a Polyval (Matlab's function) equivalent in C++ STL?


I need to evaluate a polynomial (1 dimension) of some degree (<10) in multiple points. For instance, when calculating for polynomial p(x) = 4x^3 + 2*x^2 -2*x + 5, at x = 0, x= 2 result should be : [5, 41]. Couldn't find an equivalent function to Matlab's Polyval.

The result accuracy is not critical for me (can be rounded to integer) but the calculation time is.

My straight-forward solution:

#include<iostream>
#include<vector>
#include<math.h>

std::vector<double> Polyval(std::vector<double> coeffs, std::vector<double> values)
{
  std::vector<double> results;
    for (auto const &val:values)
        {
          double result = 0;
          for (int i = 0, deg = coeffs.size() - 1; deg >= 0; deg--, i++)
            {
                result += coeffs[i] * std::pow(val, deg);
            }
          results.push_back (result);
        }
        return results;
}

int main()
{
  std::vector<double> coeffs = { 4, 2, -2, 5};
  std::vector<double> valuesToEvaluate = { 0, 2 , -4};
  std::vector<double> results = Polyval (coeffs, valuesToEvaluate);

  for (auto const &res:results)
    {
      std::cout << res << std::endl;
    }
}

Not sure if there is a better way in terms of performance.


Solution

  • As suggested in the comments I now use Horner's method, based on Boost implementation of polynomial evaluation, The major differences are :

    1. Polynomial order - in this solution, same as Matlab, highest polynomial degree is first. e.g : p(x) = 4x^3 + 2*x^2 -2*x + 5 is represented as a vector like this { 4, 2, -2, 5}

    2. Evaluates multiple values.

    #include<assert.h>
    #include<vector>
    
    std::vector<double> Polyval(std::vector<double> coeffs, std::vector<double> values)
    {
      assert(coeffs.size() > 0);
      std::vector<double> results;
      for (auto const &val:values)
      {
          double result = coeffs[0];
          for (int i = 1; i < coeffs.size(); i++)
            {
                result *= val;
                result += coeffs[i];
            }
            results.push_back (result);
        }
        return results;
    }
    

    Edit: Adding performance metrics of the two methods (using pow() vs. Horner's method )

    Metrics

    Polynomial : p(x) = 4*x^5 + 2*x^4 -2*x^3 + 5*x + 15

    Runs : 10,000

    Points to evaluate : {0, 2, -4, 8, 15, 1.25, 512 ,-5.3 ,12.215, 153, 23, -11}

    Build type : RELEASE

    Duration times : pow - 46,576[microseconds] vs. Horner -6,500[microseconds]

    Duration difference : ~ 7 times faster (in favor of Horner's method)

    Measured duration like this, for both implementations:

    #include<iostream>
    #include<assert.h>
    #include<vector>
    #include<chrono>
    
        int iter = 10000;
        std::vector<double> coeffs = { 4, 2, -2, 5, 0, 15};
        std::vector<double> valuesToEvaluate = {0, 2, -4, 8, 15, 1.25, 512 ,-5.3 
        ,12.215, 153, 23, -11};
        auto start = std::chrono::high_resolution_clock::now();
    
        do{
        std::vector<double> results = Polyval(coeffs, valuesToEvaluate);
        }
        while(iter-->0);
    
        auto end = std::chrono::high_resolution_clock::now();
        long duration = std::chrono::duration_cast<std::chrono::microseconds>(end - 
        start).count();
    
        std::cout << duration << std::endl;