If I have:
self.model.add(LSTM(lstm1_size, input_shape=(seq_length, feature_dim), return_sequences=True))
self.model.add(BatchNormalization())
self.model.add(Dropout(0.2))
then my seq_length
specifies how many slices of data I want to process at once. If it matters, my model is a sequence-to-sequence (same size).
But if I have:
self.model.add(Bidirectional(LSTM(lstm1_size, input_shape=(seq_length, feature_dim), return_sequences=True)))
self.model.add(BatchNormalization())
self.model.add(Dropout(0.2))
then is that doubling the sequence size? Or at each time step, is it getting seq_length / 2
before and after that timestep?
Using a bidirectional LSTM layer has no effect on the sequence length. I tested this with the following code:
from keras.models import Sequential
from keras.layers import Bidirectional,LSTM,BatchNormalization,Dropout,Input
model = Sequential()
lstm1_size = 50
seq_length = 128
feature_dim = 20
model.add(Bidirectional(LSTM(lstm1_size, input_shape=(seq_length, feature_dim), return_sequences=True)))
model.add(BatchNormalization())
model.add(Dropout(0.2))
batch_size = 32
model.build(input_shape=(batch_size,seq_length, feature_dim))
model.summary()
This resulted in the following output for bidirectional
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
bidirectional_1 (Bidirection (32, 128, 100) 28400
_________________________________________________________________
batch_normalization_1 (Batch (32, 128, 100) 400
_________________________________________________________________
dropout_1 (Dropout) (32, 128, 100) 0
=================================================================
Total params: 28,800
Trainable params: 28,600
Non-trainable params: 200
No bidirectional layer:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
lstm_1 (LSTM) (None, 128, 50) 14200
_________________________________________________________________
batch_normalization_1 (Batch (None, 128, 50) 200
_________________________________________________________________
dropout_1 (Dropout) (None, 128, 50) 0
=================================================================
Total params: 14,400
Trainable params: 14,300
Non-trainable params: 100
_________________________________________________________________