Search code examples
pythonpandasnumpybinning

Pandas Dataframe - Bin on multiple columns & get statistics on another column


Problem

I have a target variable x and some additional variables A and B. I want to calculate averages (and other statistics) of x when certain conditions for A and B are met. A real world example would be to calculate the average air temperature (x) from a long series of measurements when solar radiation (A) and wind speed (B) fall into certain pre-defined bin ranges.

Potential solutions

I have been able to accomplish this with loops (see example below), but I've learned that I should avoid looping over dataframes. From my research on this site I feel like there is probably a much more elegant / vectorized solution using either pd.cut or np.select, but I frankly couldn't figure out how to do it.

Example

Generate sample data

import pandas as pd
import numpy as np

n = 100
df = pd.DataFrame(
    {
        "x": np.random.randn(n),
        "A": np.random.randn(n)+5,
        "B": np.random.randn(n)+10
    }
)

df.head() output:

    x           A           B
0   -0.585313   6.038620    9.909762
1   0.412323    3.991826    8.836848
2   0.211713    5.019520    9.667349
3   0.710699    5.353677    9.757903
4   0.681418    4.452754    10.647738

Calculate bin averages

# define bin ranges
bins_A = np.arange(3, 8)
bins_B = np.arange(8, 13)

# prepare output lists
A_mins= []
A_maxs= []
B_mins= []
B_maxs= []
x_means= []
x_stds= []
x_counts= []

# loop over bins
for i_A in range(0, len(bins_A)-1):
    A_min = bins_A[i_A]
    A_max = bins_A[i_A+1]
    for i_B in range(0, len(bins_B)-1):
        B_min = bins_B[i_B]
        B_max = bins_B[i_B+1]
        
        # binning conditions for current step
        conditions = np.logical_and.reduce(
            [
                df["A"] > A_min,
                df["A"] < A_max,
                df["B"] > B_min,
                df["B"] < B_max,
            ]
        )
        
        # calculate statistics for x and store values in lists
        x_values = df.loc[conditions, "x"]
        x_means.append(x_values.mean())
        x_stds.append(x_values.std())
        x_counts.append(x_values.count())

        A_mins.append(A_min)
        A_maxs.append(A_max)
        B_mins.append(B_min)
        B_maxs.append(B_max)
        

Store the result in a new dataframe

binned = pd.DataFrame(
    data={
        "A_min": A_mins,
        "A_max": A_maxs,
        "B_min": B_mins,
        "B_max": B_maxs,
        "x_mean": x_means,
        "x_std": x_stds,
        "x_count": x_counts 
        }
)

binned.head() output:

    A_min   A_max   B_min   B_max   x_mean      x_std       x_count
0   3       4       8       9       0.971624    0.790972    2
1   3       4       9       10      0.302795    0.380102    3
2   3       4       10      11      0.447398    1.787659    5
3   3       4       11      12      0.462149    1.195844    2
4   4       5       8       9       0.379431    0.983965    4

Solution

  • Approach #1 : Pandas + NumPy (some to none)

    We will try to keep it to pandas/NumPy so that we could leverage dataframe methods or array methods and ufuncs, while vectorizing it at their level. This makes it easier to extend the functionalities when complex problems are to be solved or statistics are to be generated, as that seems to be case here.

    Now, to solve the problem while keeping it close to pandas, would be to generate intermediate IDs or tags that resemble the combined tracking of A and B on the given bins bins_A and bins_B respectively. To do so, one way would be to use searchsorted on these two data separately -

    tagsA = np.searchsorted(bins_A,df.A)
    tagsB = np.searchsorted(bins_B,df.B)
    

    Now, we are interested in the within-the-bounds cases only, hence masking is needed -

    vm = (tagsB>0) & (tagsB<len(bins_B)) & (tagsA>0) & (tagsA<len(bins_A))
    

    Let's apply this mask on the original dataframe -

    dfm = df.iloc[vm]
    

    Add in the tags for the valid ones, which would represent A_mins and B_min equivalents and hence would show up in the final output -

    dfm['TA'] = bins_A[(tagsA-1)[vm]]
    dfm['TB'] = bins_B[(tagsB-1)[vm]]
    

    So, our tagged dataframe is ready, which could then be describe-d to get the common stats after grouping on these two tags -

    df_out = dfm.groupby(['TA','TB'])['x'].describe()
    

    Sample run to make things clearer, while comparing against posted solution in question -

    In [46]: np.random.seed(0)
        ...: n = 100
        ...: df = pd.DataFrame(
        ...:     {
        ...:         "x": np.random.randn(n),
        ...:         "A": np.random.randn(n)+5,
        ...:         "B": np.random.randn(n)+10
        ...:     }
        ...: )
    
    In [47]: binned
    Out[47]: 
        A_min  A_max  B_min  B_max    x_mean     x_std  x_count
    0       3      4      8      9  0.400199  0.719007        5
    1       3      4      9     10 -0.268252  0.914784        6
    2       3      4     10     11  0.458746  1.499419        5
    3       3      4     11     12  0.939782  0.055092        2
    4       4      5      8      9  0.238318  1.173704        5
    5       4      5      9     10 -0.263020  0.815974        8
    6       4      5     10     11 -0.449831  0.682148       12
    7       4      5     11     12 -0.273111  1.385483        2
    8       5      6      8      9 -0.438074       NaN        1
    9       5      6      9     10 -0.009721  1.401260       16
    10      5      6     10     11  0.467934  1.221720       11
    11      5      6     11     12  0.729922  0.789260        3
    12      6      7      8      9 -0.977278       NaN        1
    13      6      7      9     10  0.211842  0.825401        7
    14      6      7     10     11 -0.097307  0.427639        5
    15      6      7     11     12  0.915971  0.195841        2
    
    In [48]: df_out
    Out[48]: 
           count      mean       std  ...       50%       75%       max
    TA TB                             ...                              
    3  8     5.0  0.400199  0.719007  ...  0.302472  0.976639  1.178780
       9     6.0 -0.268252  0.914784  ... -0.001510  0.401796  0.653619
       10    5.0  0.458746  1.499419  ...  0.462782  1.867558  1.895889
       11    2.0  0.939782  0.055092  ...  0.939782  0.959260  0.978738
    4  8     5.0  0.238318  1.173704  ... -0.212740  0.154947  2.269755
       9     8.0 -0.263020  0.815974  ... -0.365103  0.449313  0.950088
       10   12.0 -0.449831  0.682148  ... -0.436773 -0.009697  0.761038
       11    2.0 -0.273111  1.385483  ... -0.273111  0.216731  0.706573
    5  8     1.0 -0.438074       NaN  ... -0.438074 -0.438074 -0.438074
       9    16.0 -0.009721  1.401260  ...  0.345020  1.284173  1.950775
       10   11.0  0.467934  1.221720  ...  0.156349  1.471263  2.240893
       11    3.0  0.729922  0.789260  ...  1.139401  1.184846  1.230291
    6  8     1.0 -0.977278       NaN  ... -0.977278 -0.977278 -0.977278
       9     7.0  0.211842  0.825401  ...  0.121675  0.398750  1.764052
       10    5.0 -0.097307  0.427639  ... -0.103219  0.144044  0.401989
       11    2.0  0.915971  0.195841  ...  0.915971  0.985211  1.054452
    

    So, as mentioned earlier, we have our A_min and B_min in TA and TB, while the relevant statistics are captured in other headers. Note that this would be a multi-index dataframe. If we need to capture the equivalent array data, simply do : df_out.loc[:,['count','mean','std']].values for the stats, while np.vstack(df_out.loc[:,['count','mean','std']].index) for the bin interval-starts.

    Alternatively, to capture the equivalent stat data without describe, but using dataframe methods, we can do something like this -

    dfmg = dfm.groupby(['TA','TB'])['x']
    dfmg.size().unstack().values
    dfmg.std().unstack().values
    dfmg.mean().unstack().values
    

    Alternative #1 : Using pd.cut

    We can also use pd.cut as was suggested in the question to replace searchsorted for a more compact one as the out-of-bounds ones are handled automatically, keeping the basic idea same -

    df['TA'] = pd.cut(df['A'],bins=bins_A, labels=range(len(bins_A)-1))
    df['TB'] = pd.cut(df['B'],bins=bins_B, labels=range(len(bins_B)-1))
    df_out = df.groupby(['TA','TB'])['x'].describe()
    

    So, this gives us the stats. For A_min and B_min equivalents, simply use the index levels -

    A_min = bins_A[df_out.index.get_level_values(0)]
    B_min = bins_B[df_out.index.get_level_values(1)]
    

    Or use some meshgrid method -

    mA,mB = np.meshgrid(bins_A[:-1],bins_B[:-1])
    A_min,B_min = mA.ravel('F'),mB.ravel('F')
    

    Approach #2 : With bincount

    We can leverage np.bincount to get all those three stat metric values including standard-deviation, again in a vectorized manner -

    lA,lB = len(bins_A),len(bins_B)
    n = lA+1
    
    x,A,B = df.x.values,df.A.values,df.B.values
    
    tagsA = np.searchsorted(bins_A,A)
    tagsB = np.searchsorted(bins_B,B)
    
    t = tagsB*n + tagsA
    
    L = n*lB
    
    countT = np.bincount(t, minlength=L)
    countT_x = np.bincount(t,x, minlength=L)
    avg_all = countT_x/countT
    count = countT.reshape(-1,n)[1:,1:-1].ravel('F')
    avg = avg_all.reshape(-1,n)[1:,1:-1].ravel('F')
    
    # Using numpy std definition for ddof case
    ddof = 1.0 # default one for pandas std
    grp_diffs = (x-avg_all[t])**2
    std_all = np.sqrt(np.bincount(t,grp_diffs, minlength=L)/(countT-ddof))
    stds = std_all.reshape(-1,n)[1:,1:-1].ravel('F')
    

    Approach #3 : With sorting to leverage reduceat methods -

    x,A,B = df.x.values,df.A.values,df.B.values
    vm = (A>bins_A[0]) & (A<bins_A[-1]) & (B>bins_B[0]) & (B<bins_B[-1])
    
    xm = x[vm]
    
    tagsA = np.searchsorted(bins_A,A)
    tagsB = np.searchsorted(bins_B,B)
    
    tagsAB = tagsB*(tagsA.max()+1) + tagsA
    tagsABm = tagsAB[vm]
    sidx = tagsABm.argsort()
    tagsAB_s = tagsABm[sidx]
    xms = xm[sidx]
    
    cut_idx = np.flatnonzero(np.r_[True,tagsAB_s[:-1]!=tagsAB_s[1:],True])
    N = (len(bins_A)-1)*(len(bins_B)-1)
    
    count = np.diff(cut_idx)
    avg = np.add.reduceat(xms,cut_idx[:-1])/count
    stds = np.empty(N)
    for ii,(s0,s1) in enumerate(zip(cut_idx[:-1],cut_idx[1:])):
        stds[ii] = np.std(xms[s0:s1], ddof=1)
    

    To get in the same or similar format as the pandas dataframe styled output, we need to reshape. Hence, it would be avg.reshape(-1,len(bins_A)-1).T and so on.