I have a pandas df that contains date level data and
df
MONTH_YEAR class id accnt_id
2012-01 fruits 1 an
2012-01 fruits 2 abc
2012-01 fruits 1 def
2012-02 fruits 2 abc
2012-02 fruits 2 andi
2011-01 vege 1 an
and so on..
current query:
df.groupby(['class', 'MONTH_YEAR']).agg({'id': 'nunique', 'accnt_id': 'nunique'})
need output as:
class MONTH_YEAR id accnt_id cumsum_unique_id
fruits 2012-01 2 3 3
fruits 2012-02 1 2 4
vege 2011-01 1 1 1
how to get cumsum_unique_id?
You need one more step to get the cumsum_unique_id
s=df.groupby(['class', 'MONTH_YEAR']).agg({'id': 'nunique', 'accnt_id': 'nunique'})
s1=df.drop_duplicates(['class','accnt_id']).\
groupby(['class', 'MONTH_YEAR']).accnt_id.count().groupby(level=0).cumsum()
s['cumsum_unique_id']=s1
s
Out[39]:
id accnt_id cumsum_unique_id
class MONTH_YEAR
fruits 2012-01 2 3 3
2012-02 1 2 4
vege 2011-01 1 1 1