I did look up a similar example which used
## Some sample data
set.seed(0)
dat <- matrix(1:100, 10, 10)
dat[sample(1:100, 50)] <- NA
dat <- data.frame(dat)
## Remove columns with more than 50% NA
dat[, -which(colMeans(is.na(dat)) > 0.5)]
But I am not sure how to convert it into a number and not a percentage.
One base R
option could be:
dat[, colMeans(is.na(dat)) <= 0.5]
X1 X2 X4 X5 X6 X8 X10
1 NA 11 NA NA NA 71 NA
2 NA 12 32 NA 52 72 NA
3 3 NA 33 NA 53 73 93
4 4 14 NA 44 NA NA 94
5 5 15 35 NA 55 75 95
6 NA NA 36 46 NA 76 NA
7 NA NA NA 47 57 NA 97
8 8 18 NA 48 NA 78 98
9 9 NA 39 NA 59 79 99
10 NA NA 40 50 NA 80 100
Or using a specified number:
dat[, colSums(is.na(dat)) <= 5]
Or using half of the rows as a criteria:
dat[, colSums(is.na(dat)) <= nrow(dat)/2]
And the same idea with dplyr
:
dat %>%
select_if(~ mean(is.na(.)) <= 0.5)
Or using a specified number:
dat %>%
select_if(~ sum(is.na(.)) <= 5)
Similarly, using half of the rows as a criteria:
dat %>%
select_if(~ sum(is.na(.)) <= length(.)/2)