I have a large data.frame that I am trying to spread. A toy example looks like this.
data = data.frame(date = rep(c("2019", "2020"), 2), ticker = c("SPY", "SPY", "MSFT", "MSFT"), value = c(1, 2, 3, 4))
head(data)
date ticker value
1 2019 SPY 1
2 2020 SPY 2
3 2019 MSFT 3
4 2020 MSFT 4
I would like to spread it so the data.frame looks like this.
spread(data, key = ticker, value = value)
date MSFT SPY
1 2019 3 1
2 2020 4 2
However, when I do this on my actual data.frame, I get an error.
Error: Each row of output must be identified by a unique combination of keys.
Keys are shared for 18204 rows:
* 30341, 166871
* 30342, 166872
* 30343, 166873
* 30344, 166874
* 30345, 166875
* 30346, 166876
* 30347, 166877
* 30348, 166878
* 30349, 166879
* 30350, 166880
* 30351, 166881
* 30352, 166882
Below is a head and tail of my data.frame
head(df)
ref.date ticker weeklyReturn
<date> <chr> <dbl>
1 2008-02-01 SPY NA
2 2008-02-04 SPY NA
3 2008-02-05 SPY NA
4 2008-02-06 SPY NA
5 2008-02-07 SPY NA
6 2008-02-08 SPY -0.0478
tail(df)
ref.date ticker weeklyReturn
<date> <chr> <dbl>
1 2020-02-12 MDYV 0.00293
2 2020-02-13 MDYV 0.00917
3 2020-02-14 MDYV 0.0179
4 2020-02-18 MDYV 0.0107
5 2020-02-19 MDYV 0.00422
6 2020-02-20 MDYV 0.00347
You can use dplyr
and tidyr
packages. To get rid of that error, you would have to firstly sum the values for each group.
data %>%
group_by(date, ticker) %>%
summarise(value = sum(value)) %>%
pivot_wider(names_from = ticker, values_from = value)
# date MSFT SPY
# <fct> <dbl> <dbl>
# 1 2019 3 1
# 2 2020 4 2