I am attempting to visualize the results of a K-Means clustering implementation on the Divorce dataset from UCI Machine Learning Repository.
My code is below:
import pandas as pd, seaborn as sns1
import matplotlib.pyplot as plt
from scipy import cluster
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
df = pd.read_csv('C:\\Users\\wundermahn\\Desktop\\code\\divorce.csv')
y = df['Class']
X = df.drop('Class', axis=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
y_pred = KMeans(n_clusters=2, random_state=170).fit_predict(X_test)
plt.subplot(221)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.title("Guess")
plt.show()
This was heavily influenced by the hyperlink K-Means link above.
I am getting as an error:
Traceback (most recent call last):
File "c:\Users\wundermahn\Desktop\code\kmeans.py", line 25, in <module>
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
File "C:\Python367-64\lib\site-packages\pandas\core\frame.py", line 2800, in __getitem__
indexer = self.columns.get_loc(key)
File "C:\Python367-64\lib\site-packages\pandas\core\indexes\base.py", line 2646, in get_loc
return self._engine.get_loc(key)
File "pandas\_libs\index.pyx", line 111, in pandas._libs.index.IndexEngine.get_loc
File "pandas\_libs\index.pyx", line 116, in pandas._libs.index.IndexEngine.get_loc
TypeError: '(slice(None, None, None), 0)' is an invalid key
What am I doing incorrectly? Why is my slice None
type when I am clearly passing data to it?
plt.scatter
expects x
and y
to be array_like. Apparently a dataframe is not array-like for this function.
If you convert either X
or the input to plt_scatter
to a Numpy array it should work.
import pandas as pd, seaborn as sns1
import matplotlib.pyplot as plt
from scipy import cluster
from sklearn.cluster import KMeans
from sklearn.model_selection import train_test_split
import numpy as np
df = pd.read_csv('divorce.csv', sep=';')
y = df['Class']
X = np.array(df.drop('Class', axis=1))
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42)
y_pred = KMeans(n_clusters=2, random_state=170).fit_predict(X_test)
plt.subplot(221)
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred)
plt.title("Guess")
plt.show()