I have an xts
object, and I wish to create weighted sums of the columns (and do this a LOT). By far the easiest way is matrix multiplication, but then the result loses the nice xts
qualities.
It's easy to add them back by creating a new xts
object -- but it's both slow and tedious.
For example:
dd <- xts(matrix(rnorm(200), ncol=2), Sys.Date() + 1:100)
w_sum <- dd %*% c(-1, 1)
... and the problem is:
> tail(w_sum)
[,1]
[95,] 0.1758262
[96,] -0.3310975
[97,] -0.1204836
[98,] -1.2242001
[99,] -1.7333222
[100,] 1.1216603
The fix is:
w_sumx <- xts(dd %*% c(-1, 1), index(dd))
But not only is it bothersome, it's slow. Also, i note with interest that xts
is really fast for subtraction. Is there a way to do this which leverages the fast internals of xts
?
f1 <- function() xts(dd %*% c(-1, 1), index(dd))
f2 <- function() dd[,2] - dd[,1]
> microbenchmark::microbenchmark(f1(), f2(), times = 1000)
Unit: microseconds
expr min lq mean median uq max neval cld
f1() 83.7 97.3 114.1294 104.65 115.00 6688.4 1000 b
f2() 26.3 34.0 40.6202 38.85 45.15 155.4 1000 a
A few simple alternatives exists. Obviously you could rewrite the method in Rcpp
as suggested, but a simpler alternative is just to overwrite the attributes after performing matrix regular multiplication.
dd_new <- dd %*% c(-1, 1)
att <- attributes(dd)
att$dim <- dim(dd_new)
attributes(dd_new) <- att
This is not as fast as pure matrix multiplication, but is about 10 - 13x faster than subsetting the time series itself.
microbenchmark::microbenchmark(xts = dd[, 1] - dd[, 2],
matmult = dd %*% c(1, -1),
xtsmatmult = xts(dd %*% c(1, -1), index(dd)),
"%.%" = dd %.% c(1, -1),
"%-%" = dd %-% c(1, -1),
times = 1e5)
Unit: milliseconds
expr min lq mean median uq max neval
xts 0.0396 0.0685 0.11200 0.0998 0.1170 15.40 1e+05
matmult 0.0008 0.0021 0.00352 0.0028 0.0040 7.71 1e+05
xtsmatmult 0.0853 0.1380 0.22900 0.2100 0.2300 117.00 1e+05
%.% 0.0025 0.0055 0.00905 0.0076 0.0099 8.97 1e+05
%-% 0.0096 0.0183 0.03030 0.0268 0.0318 101.00 1e+05
In the above %.%
is a barebone function leaving only doing the matrix multiplication and overwriting the attributes, while %-%
adds some simple input-checks, to ensure that dimensions are acceptable, and using S3
class style, in order to simplify generalizations.
note that the compiler::cmpfun
function has been used to byte-compile the functions (similar to a package function). In this case the effect is insignificant.
`%.%` <- compiler::cmpfun(function(x, z){
x2 <- x %*% z
att <- attributes(x)
att$dim <- dim(x2)
attributes(x2) <- att
x2
})
`%-%` <- function(x, z)
UseMethod('%-%')
`%-%.xts` <- compiler::cmpfun(function(x, z){
##
if(!is.xts(x))
stop('x must be an xts object')
if(!is.numeric(z) || !(n <- length(z)) == ncol(x) || n == 0)
stop('z must be an index vector')
x2 <- x %*% z
att <- attributes(x)
att$dim <- dim(x2)
attributes(x2) <- att
x2
})