I am trying to implement the distance of jaccard in the kproto function (package clustMixType in R), but without any success. The aim is to do a cluster analysis of my dataset.
The distance of jaccard that I want to use is the complement of the similarity coefficient of jaccard, so
distance of jaccard = 1-[a/(a+b+c)] = [(b+c)/(a+b+c)], or
distance of jaccard = 1-[M11/(M01+M10+M11)] = [(M01+M10)/(M01+M10+M11)].
The source code of the kproto function is presented bellow. The variable d1 is the euclidean distance for the numeric variables and the variable d2 is the distance from the simple matching coefficient for the categorical variables (as factors).
It computes the distances between the observations and the prototypes, not between observations. Prototypes are calculated, and not an observation of the data set it self.
So my twoo questions are 1) d2 is what I want to modify, but how? 2) should d1 be the sqrt of what is being calculated?
Thank you for all your help. It will be much apreciated.
Here is an excerpt of the dataset i'm working on, where V1 to V4 are factor (binary) variables (to use the jaccard distance) and V5 to V8 are numeric variables (to use the euclidean distance):
V1;V2;V3;V4;V5;V6;V7;V8
1;1;0;0;6;2;3;3
0;1;0;1;3;5;2;1
1;1;0;0;1;3;2;1
1;1;0;0;4;3;3;1
1;1;1;0;1;4;1;1
1;0;1;0;4;3;1;1
1;1;0;0;2;4;2;1
1;1;0;0;2;4;2;1
1;1;0;0;6;2;1;1
1;1;0;0;6;2;2;1
1;1;0;0;5;2;3;1
1;1;0;0;4;3;3;1
1;1;0;0;4;4;2;1
1;1;0;0;4;3;3;1
1;1;0;0;4;3;3;1
1;1;0;0;3;4;2;1
1;1;0;0;4;3;2;1
1;1;0;0;5;2;3;1
1;1;0;0;4;3;4;1
1;1;0;0;4;3;2;1
1;1;0;0;4;3;2;1
1;1;0;0;3;3;2;1
1;1;0;0;3;3;3;1
1;1;0;0;5;2;3;1
1;1;0;0;5;2;3;1
1;1;0;0;5;2;2;1
1;1;0;0;3;3;2;1
1;1;0;0;5;2;3;1
1;1;0;0;5;2;2;1
1;0;0;0;3;4;2;1
1;1;0;0;7;2;4;1
1;1;0;0;7;2;2;1
1;1;0;0;5;2;4;1
1;1;0;0;5;3;4;1
1;1;0;0;5;3;2;1
1;1;0;0;5;3;4;1
1;0;0;0;3;5;3;1
0;1;0;0;6;2;4;1
1;1;0;0;6;2;3;1
1;1;0;0;6;2;4;1
Lets take the first twoo observations from the dataset provided above as an example:
V1;V2;V3;V4;V5;V6;V7;V8
1;1;0;0;6;2;3;3
0;1;0;1;3;5;2;1
The algorithm first select the k prototypes from the data set randomly, so lets supose that the second observation is one of the inicial prototypes. As I understood the algorithm creates a data frame called "protos" initially with k random observations from the data set provided, so the second observation would be one of the lines of the "proto" dataframe.
The combined distance used to cluster the observations would be d=d1+lambda*d2. Lambda can also be a vector of individual weights to each variable. d is the distance between the observations in the data set provided and the "proto" matrix created initially with k random observations.
In this case, considering the first twoo observations presented, the calculated distances, between the observation (yi) and the prototype (yk), would be as follow:
Euclidian for the numeric variables (V5 to V8):
d1=sum[(yij-ykj)^2]^0,5
where,
k=1 to k clusters
i=1 to n observations
j=5 to 8 th variable
d1=[[(6-3)^2]+[(2-5)^2]+[(3-2)^2]+[(3-1)^2]]^0,5
d1=[9+9+1+4]^0,5
d1=4.796
Jaccard, for the set of binary variables (V1 to V4):
d2=[(b+c)/(a+b+c)]
where,
a=1
b=1
c=1
are correspondences counts between the n observations and the k prototypes, for variables 1 to 4.
d2=[(1+1)/(1+1+1)]
d2=2/3
d2=0.667
So the combined distance between this especific observation and the initial prototype of that cluster is:
d=d1+d2
d=4.796+0.667
d=5.463
The results, as I understood, are then stored in a matrix called "d", line by line, the size of [number of lines=number of observations, number of columns = number of clusters k].
I'm expecting to correctly calculate the euclidian and jaccard distances, modifiyng the kproto function, maintaining the steps and results provided by the original function.
NOTE: the final function should work on any number of observations, variables and prototypes, and not only to my specific dataset.
I've also tried to mix the codes from kproto (clustMixType package) and dist.binary (ade4 package), but they work in different ways.
#K-Prototypes algorithm
kproto.default <- function(x, k, lambda = NULL, iter.max = 100, nstart = 1, na.rm = TRUE, keep.data = TRUE, verbose = TRUE, ...){
# initial error checks
if(!is.data.frame(x)) stop("x should be a data frame!")
if(ncol(x) < 2) stop("For clustering x should contain at least two variables!")
if(iter.max < 1 | nstart < 1) stop("iter.max and nstart must not be specified < 1!")
if(!is.null(lambda)){
if(any(lambda < 0)) stop("lambda must be specified >= 0!")
if(!any(lambda > 0)) stop("lambda must be specified > 0 for at least one variable!")
}
# check for numeric and factor variables
numvars <- sapply(x, is.numeric)
anynum <- any(numvars)
catvars <- sapply(x, is.factor)
anyfact <- any(catvars)
if(!anynum) stop("\n No numeric variables in x! Try using kmodes() from package klaR...\n\n")
if(!anyfact) stop("\n No factor variables in x! Try using kmeans()...\n\n")
# treatment of missings
NAcount <- apply(x, 2, function(z) sum(is.na(z)))
if(verbose){
cat("# NAs in variables:\n")
print(NAcount)
}
if(any(NAcount == nrow(x))) stop(paste("Variable(s) have only NAs please remove them:",names(NAcount)[NAcount == nrow(x)],"!"))
if(na.rm) {
miss <- apply(x, 1, function(z) any(is.na(z)))
if(verbose){
cat(sum(miss), "observation(s) with NAs.\n")
if(sum(miss) > 0) message("Observations with NAs are removed.\n")
cat("\n")
}
x <- x[!miss,]
} # remove missings
if(!na.rm){
allNAs <- apply(x,1,function(z) all(is.na(z)))
if(sum(allNAs) > 0){
if(verbose) cat(sum(allNAs), "observation(s) where all variables NA.\n")
warning("No meaningful cluster assignment possible for observations where all variables NA.\n")
if(verbose) cat("\n")
}
}
if(nrow(x) == 1) stop("Only one observation clustering not meaningful.")
k_input <- k # store input k for nstart > 1 as clusters can be merged
# initialize prototypes
if(!is.data.frame(k)){
if (length(k) == 1){
if(as.integer(k) != k){k <- as.integer(k); warning(paste("k has been set to", k,"!"))}
if(nrow(x) < k) stop("Data frame has less observations than clusters!")
ids <- sample(nrow(x), k)
protos <- x[ids,]
}
if (length(k) > 1){
if(nrow(x) < length(k)) stop("Data frame has less observations than clusters!")
ids <- k
k <- length(ids)
if(length(unique(ids)) != length(ids)) stop("If k is specified as a vector it should contain different indices!")
if(any(ids<1)|any(ids>nrow(x))) stop("If k is specified as a vector all elements must be valid indices of x!")
#check for integer
protos <- x[ids,]
}
rm(ids)
}
if(is.data.frame(k)){
if(nrow(x) < nrow(k)) stop("Data frame has less observations than clusters!")
if(length(names(k)) != length(names(x))) stop("k and x have different numbers of columns!")
if(any(names(k) != names(x))) stop("k and x have different column names!")
if(anynum) {if( any(sapply(k, is.numeric) != numvars)) stop("Numeric variables of k and x do not match!")}
if(anyfact) {if( any(sapply(k, is.factor) != catvars)) stop("Factor variables of k and x do not match!")}
protos <- k
k <- nrow(protos)
}
if(k < 1) stop("Number of clusters k must not be smaller than 1!")
# automatic calculation of lambda
if(length(lambda) > 1) {if(length(lambda) != sum(c(numvars,catvars))) stop("If lambda is a vector, its length should be the sum of numeric and factor variables in the data frame!")}
if(is.null(lambda)){
if(anynum & anyfact){
vnum <- mean(sapply(x[,numvars, drop = FALSE], var, na.rm = TRUE))
vcat <- mean(sapply(x[,catvars, drop = FALSE], function(z) return(1-sum((table(z)/sum(!is.na(z)))^2))))
if (vnum == 0){
if(verbose) warning("All numerical variables have zero variance.")
anynum <- FALSE
}
if (vcat == 0){
if(verbose) warning("All categorical variables have zero variance.")
anyfact <- FALSE
}
if(anynum & anyfact){
lambda <- vnum/vcat
if(verbose) cat("Estimated lambda:", lambda, "\n\n")
}else{
lambda <- 1
}
}
}
# initialize clusters
clusters <- numeric(nrow(x))
tot.dists <- NULL
moved <- NULL
iter <- 1
# check for any equal prototypes and reduce cluster number in case of occurence
if(k > 1){
keep.protos <- rep(TRUE,k)
for(l in 1:(k-1)){
for(m in (l+1):k){
d1 <- sum((protos[l,numvars, drop = FALSE]-protos[m,numvars, drop = FALSE])^2) # euclidean for numerics
d2 <- sum(protos[l,catvars, drop = FALSE] != protos[m,catvars, drop = FALSE]) # wtd simple matching for categorics
if((d1+d2) == 0) keep.protos[m] <- FALSE
}
}
if(!all(keep.protos)){
protos <- protos[keep.protos,]
k <- sum(keep.protos)
if(verbose) message("Equal prototypes merged. Cluster number reduced to:", k, "\n\n")
}
}
# special case only one cluster
if(k == 1){clusters <- rep(1, nrow(x)); size <- table(clusters); iter <- iter.max} # REM: named vector size is needed later...
# start iterations for standard case (i.e. k > 1)
while(iter < iter.max){
# compute distances
nrows <- nrow(x)
dists <- matrix(NA, nrow=nrows, ncol = k)
for(i in 1:k){
#a0 <- proc.time()[3]
#d1 <- apply(x[,numvars],1, function(z) sum((z-protos[i,numvars])^2)) # euclidean for numerics
d1 <- (x[,numvars, drop = FALSE] - matrix(rep(as.numeric(protos[i, numvars, drop = FALSE]), nrows), nrow=nrows, byrow=T))^2
if(length(lambda) == 1) d1 <- rowSums(d1, na.rm = TRUE)
if(length(lambda) > 1) d1 <- as.matrix(d1) %*% lambda[numvars]
#a1 <- proc.time()[3]
#d2 <- lambda * apply(x[,catvars],1, function(z) sum((z != protos[i,catvars]))) # wtd simple matching for categorics
d2 <- sapply(which(catvars), function(j) return(x[,j] != rep(protos[i,j], nrows)) )
d2[is.na(d2)] <- FALSE
if(length(lambda) == 1) d2 <- lambda * rowSums(d2)
if(length(lambda) > 1) d2 <- as.matrix(d2) %*% lambda[catvars]
#a2 <- proc.time()[3]
dists[,i] <- d1 + d2
#cat(a1-a0, a2-a1, "\n")
}
# assign clusters
old.clusters <- clusters
# clusters <- apply(dists, 1, function(z) which.min(z))
clusters <- apply(dists, 1, function(z) {a <- which.min(z); if (length(a)>1) a <- sample(a,1); return(a)}) # sample in case of multiple minima
size <- table(clusters)
min.dists <- apply(cbind(clusters, dists), 1, function(z) z[z[1]+1])
within <- as.numeric(by(min.dists, clusters, sum))
tot.within <- sum(within)
# prevent from empty classes
#tot.within <- numeric(k)
#totw.list <- by(min.dists, clusters, sum)
#tot.within[names(totw.list)] <- as.numeric(totw.list)
# ...check for empty clusters and eventually reduce number of prototypes
if (length(size) < k){
k <- length(size)
protos <- protos[1:length(size),]
if(verbose) cat("Empty clusters occur. Cluster number reduced to:", k, "\n\n")
}
# trace
tot.dists <- c(tot.dists, sum(tot.within))
moved <- c(moved, sum(clusters != old.clusters))
# compute new prototypes
remids <- as.integer(names(size))
for(i in remids){
protos[which(remids == i), numvars] <- sapply(x[clusters==i, numvars, drop = FALSE], mean, na.rm = TRUE)
protos[which(remids == i), catvars] <- sapply(x[clusters==i, catvars, drop = FALSE], function(z) levels(z)[which.max(table(z))])
}
if(k == 1){clusters <- rep(1, length(clusters)); size <- table(clusters); iter <- iter.max; break}
# check for any equal prototypes and reduce cluster number in case of occurence
if(iter == (iter.max-1)){ # REM: for last iteration equal prototypes are allowed. otherwise less prototypes than assigned clusters.
keep.protos <- rep(TRUE,k)
for(l in 1:(k-1)){
for(m in (l+1):k){
d1 <- sum((protos[l,numvars, drop = FALSE]-protos[m,numvars, drop = FALSE])^2) # euclidean for numerics
d2 <- sum(protos[l,catvars, drop = FALSE] != protos[m,catvars, drop = FALSE]) # wtd simple matching for categorics
if((d1+d2) == 0) keep.protos[m] <- FALSE
}
}
if(!all(keep.protos)){
protos <- protos[keep.protos,]
k <- sum(keep.protos)
if(verbose) cat("Equal prototypes merged. Cluster number reduced to:", k, "\n\n")
}
}
# add stopping rules
if(moved[length(moved)] == 0) break
if(k == 1){clusters <- rep(1, length(clusters)); size <- table(clusters); iter <- iter.max; break}
#cat("iter", iter, "moved", moved[length(moved)], "tot.dists",tot.dists[length(tot.dists)],"\n" )
iter <- iter+1
}
### Final update of prototypes and dists
if(iter == iter.max){ # otherwise there have been no moves anymore and prototypes correspond to cluster assignments
# compute new prototypes
remids <- as.integer(names(size))
for(i in remids){
protos[which(remids == i), numvars] <- sapply(x[clusters==i, numvars, drop = FALSE], mean, na.rm = TRUE)
protos[which(remids == i), catvars] <- sapply(x[clusters==i, catvars, drop = FALSE], function(z) levels(z)[which.max(table(z))])
}
# compute distances
nrows <- nrow(x)
dists <- matrix(NA, nrow=nrows, ncol = k)
for(i in 1:k){
d1 <- (x[,numvars, drop = FALSE] - matrix(rep(as.numeric(protos[i, numvars, drop = FALSE]), nrows), nrow=nrows, byrow=T))^2
if(length(lambda) == 1) d1 <- rowSums(d1, na.rm = TRUE)
if(length(lambda) > 1) d1 <- as.matrix(d1) %*% lambda[numvars]
d2 <- sapply(which(catvars), function(j) return(x[,j] != rep(protos[i,j], nrows)) )
d2[is.na(d2)] <- FALSE
if(length(lambda) == 1) d2 <- lambda * rowSums(d2)
if(length(lambda) > 1) d2 <- as.matrix(d2) %*% lambda[catvars]
dists[,i] <- d1 + d2
}
size <- table(clusters)
min.dists <- apply(cbind(clusters, dists), 1, function(z) z[z[1]+1])
within <- as.numeric(by(min.dists, clusters, sum))
tot.within <- sum(within)
}
names(clusters) <- row.names(dists) <- row.names(x)
rownames(protos) <- NULL
# create result:
res <- list(cluster = clusters,
centers = protos,
lambda = lambda,
size = size,
withinss = within,
tot.withinss = tot.within,
dists = dists,
iter = iter,
trace = list(tot.dists = tot.dists, moved = moved))
# loop: if nstart > 1:
if(nstart > 1)
for(j in 2:nstart){
res.new <- kproto(x=x, k=k_input, lambda = lambda, iter.max = iter.max, nstart=1, verbose=verbose)
if(res.new$tot.withinss < res$tot.withinss) res <- res.new
}
if(keep.data) res$data = x
class(res) <- "kproto"
return(res)
}
I've managed to modify the functions to accept a variety of similarity measures and uploaded the R file at http://dx.doi.org/10.17632/63nyn9tjcd.1, in case someone needs it.