I use r package plotmo
to visualize coefficient shrinkage of LASSO regression. By default, it add a top axis with title 'Degrees of Freedom'. How could I delete the top title or change the content of it? Generally, how could I adjust top axis (including title and axis labels) ploted by plotmo::plot_glmnet
?
library(glmnet)
library(plotmo)
fit = glmnet(as.matrix(mtcars[-1]), mtcars[,1])
plot_glmnet(fit,xvar='lambda',label=7)
I've tried to use mtext
and axis
function, but it didn't work:
plot_glmnet(fit,xvar='lambda',label=7)
mtext('new top title', side=3)
There is a line in the code of plot_glmnet, mtext(toplabel...) that does this.. Unfortunately if you want to remove that, you have to create a new function with this line removed, and assign the namespace:
new_plot_glmnet = function (x = stop("no 'x' argument"), xvar = c("rlambda", "lambda",
"norm", "dev"), label = 10, nresponse = NA, grid.col = NA,
s = NA, ...)
{
check.classname(x, "x", c("glmnet", "multnet"))
obj <- x
beta <- get.beta(obj$beta, nresponse)
ibeta <- nonzeroCoef(beta)
if (length(ibeta) == 0) {
plot(0:1, 0:1, col = 0)
legend("topleft", legend = "all glmnet coefficients are zero",
bty = "n")
return(invisible(NULL))
}
beta <- as.matrix(beta[ibeta, , drop = FALSE])
xlim <- dota("xlim", ...)
xvar <- match.arg1(xvar)
switch(xvar, norm = {
if (inherits(obj, "multnet") || inherits(obj, "mrelnet")) {
stop0("xvar=\"norm\" is not supported by plot_gbm for ",
"multiple responses (use plot.glmnet instead)")
}
x <- apply(abs(beta), 2, sum)
if (!is.specified(xlim)) xlim <- c(min(x), max(x))
xlab <- "L1 Norm"
approx.f <- 1
}, lambda = {
x <- log(obj$lambda)
if (!is.specified(xlim)) xlim <- c(min(x), max(x))
xlab <- "Log Lambda"
approx.f <- 0
}, rlambda = {
x <- log(obj$lambda)
if (!is.specified(xlim)) xlim <- c(max(x), min(x))
xlab <- "Log Lambda"
approx.f <- 0
}, dev = {
x <- obj$dev.ratio
if (!is.specified(xlim)) xlim <- c(min(x), max(x))
xlab <- "Fraction Deviance Explained"
approx.f <- 1
})
xlim <- fix.lim(xlim)
if (xvar != "rlambda")
stopifnot(xlim[1] < xlim[2])
else if (xlim[2] >= xlim[1])
stop0("xlim[1] must be bigger than xlim[2] for xvar=\"rlambda\"")
iname <- get.iname(beta, ibeta, label)
old.par <- par("mar", "mgp", "cex.axis", "cex.lab")
on.exit(par(mar = old.par$mar, mgp = old.par$mgp, cex.axis = old.par$cex.axis,
cex.lab = old.par$cex.lab))
mar4 <- old.par$mar[4]
if (length(iname)) {
cex.names <- min(1, max(0.5, 2.5/sqrt(length(iname))))
mar4 <- max(old.par$mar[4] + 1, 0.75 * cex.names * par("cex") *
max(nchar(names(iname))))
}
main <- dota("main", ...)
nlines.needed.for.main <- if (is.specified(main))
nlines(main) + 0.5
else 0
par(mar = c(old.par$mar[1], old.par$mar[2], max(old.par$mar[3],
nlines.needed.for.main + 2.6), mar4))
par(mgp = c(1.5, 0.4, 0))
par(cex.axis = 0.8)
ylab <- "Coefficients"
if (is.list(obj$beta))
ylab <- paste0(ylab, ": Response ", rownames(obj$dfmat)[nresponse])
coef.col <- get.coef.col(..., beta = beta)
keep <- which((coef.col != "NA") & (coef.col != "0"))
iname <- iname[iname %in% keep]
beta[-keep, ] <- NA
call.plot(graphics::matplot, force.x = x, force.y = t(beta),
force.main = "", force.col = coef.col, def.xlim = xlim,
def.xlab = xlab, def.ylab = ylab, def.lty = 1, def.lwd = 1,
def.type = "l", ...)
abline(h = 0, col = "gray", lty = 3)
maybe.grid(x = x, beta = beta, grid.col = grid.col, coef.col = coef.col,
...)
if (xvar == "rlambda") {
annotate.rlambda(lambda = obj$lambda, x = x, beta = beta,
s = s, grid.col = grid.col, coef.col = coef.col,
...)
toplab <- "Lambda"
}
else {
top.axis(obj, x, nresponse, approx.f)
toplab <- "Degrees of Freedom"
}
#mtext(toplab, side = 3, line = 1.5, cex = par("cex") * par("cex.lab"))
if (is.specified(main))
mtext(main, side = 3, line = 3, , cex = par("cex"))
if (length(iname))
right.labs(beta, iname, cex.names, coef.col)
invisible(NULL)
}
environment(new_plot_glmnet) <- asNamespace('plotmo')
Then you plot:
new_plot_glmnet(fit,xvar='lambda',label=7)
mtext('new top title', side=3,padj=-2)