I have a df like this:
arrays = [['bar', 'bar', 'baz', 'baz'],
['one', 'two', 'one', 'two']]
tuples = list(zip(*arrays))
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(3, 4), index=['A', 'B', 'C'], columns=index)
df.head()
returning:
I want to add some columns where all second level dimensions are divided by each other - bar one is divided by baz one, and bar two is divided by baz two, etc.
df[["bar"]]/df[["baz"]]
and
df[["bar"]].div(df[["baz"]])
returns NaN's
You can select both levels by only one []
:
df1 = df["bar"]/df["baz"]
print (df1)
second one two
A 1.564478 -0.115979
B 14.604267 -19.749265
C -0.511788 -0.436637
If want add MultiIndex
add MultiIndex.from_product
:
df1.columns = pd.MultiIndex.from_product([['new'], df1.columns], names=df.columns.names)
print (df1)
first new
second one two
A 1.564478 -0.115979
B 14.604267 -19.749265
C -0.511788 -0.436637
Another idea for MultiIndex
in output is use your solution with rename
columns to same names, here new
:
df2 = df[["bar"]].rename(columns={'bar':'new'})/df[["baz"]].rename(columns={'baz':'new'})
print (df2)
first new
second one two
A 1.564478 -0.115979
B 14.604267 -19.749265
C -0.511788 -0.436637