I am trying to write code for this architecture (Question Answering model: Paper https://www.hindawi.com/journals/cin/2019/9543490/) and looking for help how to get hidden state matrices Hq and Ha from stacked BiLSTM layers. Could some one please advise.
# Creating Embedding Layer for Query
# Considered fixed length as 40 for both question and answer as per research paper
embedding_layer1 = layers.Embedding(vocab_size_query, 300, weights=[embedding_matrix_query], input_length =40, trainable=False)
input_text1 =Input(shape=(40,), name="input_text")
x = embedding_layer1(input_text1)
# Creating Bidirectional layer for Query
# Each word in the context and question should be made aware of the nearby words occurring. We use a bi-directional recurrent neural network (LSTM’s) here.
x = Bidirectional(LSTM(128,recurrent_dropout=0.5,kernel_regularizer=regularizers.l2(0.001),return_sequences=True))(x)
x = Bidirectional(LSTM(128,recurrent_dropout=0.5,kernel_regularizer=regularizers.l2(0.001),return_sequences=True))(x)
flatten_1 = Flatten()(x)
## Creating Embedding Layer for Passage
embedding_layer2 = layers.Embedding(vocab_size_answer, 300, weights=[embedding_matrix_answer], input_length =40, trainable=False)
input_text2 =Input(shape=(40,), name="input_text")
x2 = embedding_layer2(input_text2)
# Creating Bidirectional layer for Passage
x2 = Bidirectional(LSTM(128,recurrent_dropout=0.5,kernel_regularizer=regularizers.l2(0.001),return_sequences=True))(x2)
x2 = Bidirectional(LSTM(128,recurrent_dropout=0.5,kernel_regularizer=regularizers.l2(0.001),return_sequences=True))(x2)
flatten_2 = Flatten()(x2)
According to the model structure and your source code, you can obtain the Hq and Ha by extracting the output of flatten_1 and flatten_2 layer. To extract the output of an intermediate layer, you can create a new model with input as the original input, and the output as the appropriate layer.
from tensorflow.keras.models import Model
model = ... # create the original model
layer_name = 'my_layer'
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
intermediate_output = intermediate_layer_model.predict(data)