I'm trying to crop segmented objects outputed by an MASK RCNN the only problem is that when i do the cropping i get the segments with mask colors and not with their original colors.
Here's the outputed image with the segments :
and here's one segment (we have 17 segments in this image ) :
as you can see , we have the segment with the mask color and not the original color.
here's the code that i'm using :
from mrcnn.config import Config
from mrcnn import model as modellib
from mrcnn import visualize
import numpy as np
import colorsys
import argparse
import imutils
import random
import cv2
import os
import matplotlib.image as mpimg
import cv2
import matplotlib.pyplot as plt
import numpy as np
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-w", "--weights", required=True,
help="path to Mask R-CNN model weights pre-trained on COCO")
ap.add_argument("-l", "--labels", required=True,
help="path to class labels file")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
ap.add_argument("-i", "--image", required=True,
help="path to input image to apply Mask R-CNN to")
args = vars(ap.parse_args())
# load the class label names from disk, one label per line
CLASS_NAMES = open(args["labels"]).read().strip().split("\n")
# generate random (but visually distinct) colors for each class label
# (thanks to Matterport Mask R-CNN for the method!)
hsv = [(i / len(CLASS_NAMES), 1, 1.0) for i in range(len(CLASS_NAMES))]
COLORS = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.seed(42)
random.shuffle(COLORS)
class SimpleConfig(Config):
# give the configuration a recognizable name
NAME = "fashion"
# set the number of GPUs to use along with the number of images
# per GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
NUM_CLASSES = 1 + 3
# Skip detections with < 90% confidence
DETECTION_MIN_CONFIDENCE = args["confidence"]
# initialize the inference configuration
config = SimpleConfig()
# initialize the Mask R-CNN model for inference and then load the
# weights
print("[INFO] loading Mask R-CNN model...")
model = modellib.MaskRCNN(mode="inference", config=config,
model_dir=os.getcwd())
model.load_weights(args["weights"], by_name=True)
# load the input image, convert it from BGR to RGB channel
# ordering, and resize the image
# default value 512 form the width
image = cv2.imread(args["image"])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = imutils.resize(image, width=1150)
# perform a forward pass of the network to obtain the results
print("[INFO] making predictions with Mask R-CNN...")
r = model.detect([image], verbose=1)[0]
image = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
['BG', 'top', 'boots' , 'bag'], r['scores'],
title="")
# get and then save the segmented objects
i = 0
mask = r["masks"]
for i in range(mask.shape[2]):
image = cv2.imread(args["image"])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = imutils.resize(image, width=1150)
for j in range(image.shape[2]):
image[:,:,j] = image[:,:,j] * mask[:,:,i]
filename = "Output/segment_%d.jpg"%i
cv2.imwrite(filename,image)
i+=1
Any Help on how to resolve this issue would be much appreciated , thank you.
I found the Error , as it has been suggested to me in Github , i had to remove the
`image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)`
Line, because my image was already converted to RGB.