I am trying to calculate the candle stick pattern called Doji. It requires two calculation of two conditions values is a pandas dataframe with the historical stock data with columns Date, High, Low, open and Close.
With the if condition I tried to explicitly make condition1 and condition2 bool and also tried it by typecasting it with any(). Both of them did not give the desired result.Printing condition1 and condition 2 separately give appropriate boolean value but combining it with '&' goes horribly wrong.
51315 True
51316 True
51317 True
51318 True
51319 True
...
53790 True
53791 True
53792 True
53793 True
53794 True
Length: 2480, dtype: bool
ValueError Traceback (most recent call last)
<ipython-input-58-3f42eed169f4> in <module>
4 values = pd.DataFrame(stocks_data.loc[stocks_data['Company']=='TCS'])
5 values.reset_index()
----> 6 study_candlesticks(values)
<ipython-input-57-fd67b4117699> in study_candlesticks(values)
21 # for row in values
22
---> 23 if calc_doji(values):
24 values['Pattern']='Doji'
25
<ipython-input-57-fd67b4117699> in calc_doji(values)
81 condition2=((values['High'] - values['Low'])>values['Close']*min_candle_size)
82 print(condition2)
---> 83 if ((condition1).bool()&(condition2).any()):
84 return True
85 else:
~\Anaconda3\lib\site-packages\pandas\core\generic.py in bool(self)
1581 )
1582
-> 1583 self.__nonzero__()
1584
1585 def __abs__(self):
~\Anaconda3\lib\site-packages\pandas\core\generic.py in __nonzero__(self)
1553 "The truth value of a {0} is ambiguous. "
1554 "Use a.empty, a.bool(), a.item(), a.any() or a.all().".format(
-> 1555 self.__class__.__name__
1556 )
1557 )
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
I am not sure where I am going wrong. Any suggestions?
Below is the code
calc_doji(values)
def calc_doji(values):
max_candle_size=0.1/100
min_candle_size=1/100
condition1 =(abs(values['Open'] - values['Close'])<values['Close']*max_candle_size)
print(condition1)
condition2=((values['High'] - values['Low'])>values['Close']*min_candle_size)
print(condition2)
if ((condition1).bool()&(condition2).any()):
return True
else:
return False
If you have two pd.Series
, where dtype('bool')
. You can compare them in the following way. Without knowing what your data looks like, I've created two pd.Series
with either True
or False
.
import pandas as pd
import numpy as np
condition1= pd.Series(np.random.choice([True, False], 100))
condition2= pd.Series(np.random.choice([True, False], 100))
Then you can compare by doing the following.
(condition1) & (condition2) # which returns a `pd.Series` where each row is either `True` or `False`.
To find any index position from each pd.Series
where both values are True
.
((condition1) & (condition2)).any() # Which returns either `True` or `False`
From your code, I would guess this line is the issue.
if ((condition1).bool()&(condition2).any()):
which should be
if ((condition1) & (condition2)).any():