I am following the TensorFlow docs to generate a tf.record from three NumPy arrays, however, I am getting an error when trying to serialize the data. I want the resulting tfrecord
to contain three features.
import numpy as np
import pandas as pd
# some random data
x = np.random.randn(85)
y = np.random.randn(85,2128)
z = np.random.choice(range(10),(85,155))
def _float_feature(value):
"""Returns a float_list from a float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=[value]))
def _int64_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def serialize_example(feature0, feature1, feature2):
"""
Creates a tf.Example message ready to be written to a file.
"""
# Create a dictionary mapping the feature name to the tf.Example-compatible
# data type.
feature = {
'feature0': _float_feature(feature0),
'feature1': _float_feature(feature1),
'feature2': _int64_feature(feature2)
}
# Create a Features message using tf.train.Example.
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
features_dataset = tf.data.Dataset.from_tensor_slices((x, y, z))
features_dataset
<TensorSliceDataset shapes: ((), (2128,), (155,)), types: (tf.float64, tf.float32, tf.int64)>
for f0,f1,f2 in features_dataset.take(1):
print(f0)
print(f1)
print(f2)
def tf_serialize_example(f0,f1,f2):
tf_string = tf.py_function(
serialize_example,
(f0,f1,f2), # pass these args to the above function.
tf.string) # the return type is `tf.string`.
return tf.reshape(tf_string, ()) # The result is a scalar
Yet, when trying to run tf_serialize_example(f0,f1,f2)
I am getting the error:
InvalidArgumentError: TypeError: <tf.Tensor: shape=(2128,), dtype=float32, numpy=
array([-0.5435242 , 0.97947884, -0.74457455, ..., has type tensorflow.python.framework.ops.EagerTensor, but expected one of: int, long, float
Traceback (most recent call last):
I think the reason is, that my features are arrays and not numbers. How do I make this code work for features, which are arrays and not numbers?
Okay, I found time to have a closer look now. I noticed that the usage of features_dataset
and tf_serialize_example
comes from the tutorial on the tensorflow webppage. I don't know what the advantages of this method are and how to fix this.
But here's a workflow that should work for your code (I re-opened the generated tfrecords files and they were fine).
import numpy as np
import tensorflow as tf
# some random data
x = np.random.randn(85)
y = np.random.randn(85,2128)
z = np.random.choice(range(10),(85,155))
def _float_feature(value):
"""Returns a float_list from a float / double."""
return tf.train.Feature(float_list=tf.train.FloatList(value=value.flatten()))
def _int64_feature(value):
"""Returns an int64_list from a bool / enum / int / uint."""
return tf.train.Feature(int64_list=tf.train.Int64List(value=value.flatten()))
def serialize_example(feature0, feature1, feature2):
"""
Creates a tf.Example message ready to be written to a file.
"""
# Create a dictionary mapping the feature name to the tf.Example-compatible
# data type.
feature = {
'feature0': _float_feature(feature0),
'feature1': _float_feature(feature1),
'feature2': _int64_feature(feature2)
}
# Create a Features message using tf.train.Example.
return tf.train.Example(features=tf.train.Features(feature=feature))
writer = tf.python_io.TFRecordWriter('TEST.tfrecords')
example = serialize_example(x,y,z)
writer.write(example.SerializeToString())
writer.close()
The main difference in this code is that you feed numpy arrays as opposed to tensorflow Tensors to serialize_example
. Hope this helps