Search code examples
pythonplotnumerical-integration

Plotting integral solution with varying parameter


I know there's similar questions around here but none of them get to the root of my problem.

I have an integral which contains a parameter which I want to produce a plot against.

My code is

import numpy as np

import matplotlib.pyplot as plt

from scipy import integrate


def intyfun(x, a):
    return np.exp(-a/4)*np.exp(-x**2*a)*(2*np.pi*x)*(np.sinh(np.pi)/np.cosh(np.pi*x)**2)

Now I'm stuck. I want integrate this function for x over 0 to infinity, and plot the value of it as a varies on the x axis as a parameter. How can I do this?

In mathematica I can do this and the plot looks like this

enter image description here

My mathematica code is

integral[a_?NumericQ] := 
 NIntegrate[
  Exp[-a/4]*Exp[-mu^2*a]*(2*Pi*mu*Sinh[mu*Pi])/(Cosh[mu*Pi]^2), {mu, 
   0, Infinity}, 
  Method -> {"GlobalAdaptive", "SymbolicProcessing" -> 0, 
    "MaxErrorIncreases" -> 10000, "SingularityHandler" -> "IMT"}, 
  MaxRecursion -> 100, PrecisionGoal -> 4]

Plot[integral[a], {a, 0.01, 10}, ImageSize -> Large, 
 FrameStyle -> Black,
 BaseStyle -> {FontFamily -> "Latin Modern Roman"}, PlotLabel -> "", 
 PlotStyle -> Black, FrameStyle -> Black,
 BaseStyle -> {FontFamily -> "Latin Modern Roman"}, PlotRange -> All, 
 AxesLabel -> {a, IntegralValue}]

if that helps.

N.B mu=x in my python code.


Solution

  • import numpy as np
    import matplotlib.pyplot as plt
    from scipy import integrate
    
    
    def function(x, a):
        return np.exp(-a/4)*np.exp(-x**2*a)*(2*np.pi*x)*(np.sinh(np.pi)/np.cosh(np.pi*x)**2)
    
    
    def integrate_function(x_min, x_max, a):
        return integrate.quad(function, x_min, x_max, args=(a,))[0]
    
    
    # define integration range
    x_min = 0
    x_max = 1
    # define range of a variable
    a_points = np.linspace(0, 10, 100)
    
    results = []
    for a in a_points:
        value = integrate_function(x_min, x_max, a)
        results.append(value)
    
    
    plt.plot(a_points, results)
    plt.ylabel("Integral value")
    plt.xlabel("a variable")
    plt.show()
    

    Output:

    enter image description here