I want to convert it to something like this,note the ds is the day someone visited,and will have values from 0 to 31, for the days not visited it will show 0, and for the days visited it will show 1. It's kinda like sparse matrix,can someone help
Update: pd.get_dummies
now accepts sparse=True
to create a SparseArray
output.
pd.get_dummies(s: pd.Series)
can be used to create a one-hot encoding like such:
header = ["ds", "buyer_id", "email_address"]
data = [[23, 305, "fatin1bd@gmail.com"],
[22, 307, "shovonbad@gmail.com"],
[25, 411, "raisulk@gmail.com"],
[22, 588, "saiful.sdp@hotmail.com"],
[24, 664, "osman.dhk@gmail.com"]]
df = pd.DataFrame(data, columns=header)
df.join(pd.get_dummies(df["ds"]))
output:
ds buyer_id email_address 22 23 24 25
0 23 305 fatin1bd@gmail.com 0 1 0 0
1 22 307 shovonbad@gmail.com 1 0 0 0
2 25 411 raisulk@gmail.com 0 0 0 1
3 22 588 saiful.sdp@hotmail.com 1 0 0 0
4 24 664 osman.dhk@gmail.com 0 0 1 0
Just for added clarification: The resulting dataframe is still stored in a dense format. You could use scipy.sparse
matrix formats to store it in a true sparse format.