I am following this tutorial for image detection using Matterport repo. I tried following this guide and edited the code to
How can I edit the following code to visualize the tensorboard ?
import tensorflow as tf
import datetime
%load_ext tensorboard
sess = tf.Session()
file_writer = tf.summary.FileWriter('/path/to/logs', sess.graph)
And then in the model area
# prepare config
config = KangarooConfig()
config.display()
# define the model
model = MaskRCNN(mode='training', model_dir='./', config=config)
model.keras_model.metrics_tensors = []
# Tensorflow board
logdir = os.path.join(
"logs", datetime.datetime.now().strftime("%Y%m%d-%H%M%S"))
tensorboard_callback = tf.keras.callbacks.TensorBoard(logdir, histogram_freq=1)
# load weights (mscoco) and exclude the output layers
model.load_weights('mask_rcnn_coco.h5',
by_name=True,
exclude=[
"mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox",
"mrcnn_mask"
])
# train weights (output layers or 'heads')
model.train(train_set,
test_set,
learning_rate=config.LEARNING_RATE,
epochs=5,
layers='heads')
I am not sure where to callbacks=[tensorboard_callback]
?
In your model.train, if you look closely in the source code documentation, there is parameter called custom_callbacks
, which defaults to None
.
It is there where you need to write your code, so to train with a custom callback, you will need to add this line of code:
model.train(train_set,
test_set,
learning_rate=config.LEARNING_RATE,
custom_callbacks = [tensorboard_callback],
epochs=5,
layers='heads')