I tried to build a CNN from scratch based on LeNet architecture from this article
I implemented backdrop and now trying to train it on the MNIST dataset using SGD with 16 batch size. I want to find a quick way to verify that the learning goes well and there are no bugs. For this, I visualize loss for every 100th batch but it takes too long on my laptop and I don't see an overall dynamic (the loss fluctuates downwards, but occasionally jumps up back so I am not sure). Could anyone suggest a proven way to find that the CNN works well without waiting many hours of training?
The MNIST consist of 60k datasets of 28 * 28 pixel.Training a CNN with batch size 16 will have 4000 forward pass per epochs. Now taking into consideration that your are using LeNet which not a very deep model. I would suggest you to do followings:
Training speed also depends on machine learning framework you are using such as Tensorflow, Pytorch etc. I hope this will help.