Search code examples
rdatetimedistancetimestep

How to calculate distance and time between two locations


Here's a sample of some data

  Tag.ID TimeStep.coa        Latitude.coa Longitude.coa
   <chr>  <dttm>                     <dbl>         <dbl>
 1 1657   2017-08-17 12:00:00         72.4         -81.1
 2 1657   2017-08-17 18:00:00         72.3         -81.1
 3 1658   2017-08-14 18:00:00         72.3         -81.2
 4 1658   2017-08-15 00:00:00         72.3         -81.3
 5 1659   2017-08-14 18:00:00         72.3         -81.1
 6 1659   2017-08-15 00:00:00         72.3         -81.2
 7 1660   2017-08-20 18:00:00         72.3         -81.1
 8 1660   2017-08-21 00:00:00         72.3         -81.2
 9 1660   2017-08-21 06:00:00         72.3         -81.2
10 1660   2017-08-21 12:00:00         72.3         -81.3
11 1661   2017-08-28 12:00:00         72.4         -81.1
12 1661   2017-08-28 18:00:00         72.3         -81.1
13 1661   2017-08-29 06:00:00         72.3         -81.2
14 1661   2017-08-29 12:00:00         72.3         -81.2
15 1661   2017-08-30 06:00:00         72.3         -81.2
16 1661   2017-08-30 18:00:00         72.3         -81.2
17 1661   2017-08-31 00:00:00         72.3         -81.2
18 1661   2017-08-31 06:00:00         72.3         -81.2
19 1661   2017-08-31 12:00:00         72.3         -81.2
20 1661   2017-08-31 18:00:00         72.4         -81.1

I'm looking for a method to obtain distances travelled for each ID. I will be using the ComputeDistance function within VTrack package (could use a different function though). The function looks like this:

ComputeDistance( Lat1, Lat2, Lon1, Lon2)

This calculates a straight line distance between lat/lon coordinates. I eventually want a dataframe with four columns Tag.ID, Timestep1, Timestep2, and distance. Here's an example:

Tag.ID   Timestep1            Timestep2               Distance
1657     2017-08-17 12:00:00  2017-08-17 18:00:00     ComputeDistance(72.4,72.3,-81.1,-81.1)
1658     2017-08-14 18:00:00  2017-08-15 00:00:00   ComputeDistance(72.3,72.3,-81.2,-81.3)
1659     2017-08-14 18:00:00  2017-08-15 00:00:00  ComputeDistance(72.3,72.3,-81.1,-81.2)
1660    2017-08-20 18:00:00   2017-08-21 00:00:00  ComputeDistance(72.3,72.3,-81.1,-81.2)
1660   2017-08-21 00:00:00   2017-08-21 06:00:00  ComputeDistance(72.3,72.3,=81.1,-81.2

And so on

EDIT: This is the code I used (thanks AntoniosK). COASpeeds2 is exactly the same as the sample df above:

test <- COASpeeds2 %>%
  group_by(Tag.ID) %>%
  mutate(Timestep1 = TimeStep.coa,
         Timestep2 = lead(TimeStep.coa),
         Distance = ComputeDistance(Latitude.coa, lead(Latitude.coa),
                                    Longitude.coa, lead(Longitude.coa))) %>%

  ungroup() %>%
  na.omit() %>%
  select(Tag.ID, Timestep1, Timestep2, Distance)

This is the df I'm getting.

   Tag.ID Timestep1           Timestep2           Distance
   <fct>  <dttm>              <dttm>                 <dbl>
 1 1657   2017-08-17 12:00:00 2017-08-17 18:00:00    2.76 
 2 1657   2017-08-17 18:00:00 2017-08-14 18:00:00    1.40 
 3 1658   2017-08-14 18:00:00 2017-08-15 00:00:00    6.51 
 4 1658   2017-08-15 00:00:00 2017-08-14 18:00:00   10.5  
 5 1659   2017-08-14 18:00:00 2017-08-15 00:00:00    7.51 
 6 1659   2017-08-15 00:00:00 2017-08-20 18:00:00    7.55 
 7 1660   2017-08-20 18:00:00 2017-08-21 00:00:00    3.69 
 8 1660   2017-08-21 00:00:00 2017-08-21 06:00:00    4.32 
 9 1660   2017-08-21 06:00:00 2017-08-21 12:00:00    3.26 
10 1660   2017-08-21 12:00:00 2017-08-28 12:00:00   10.5  
11 1661   2017-08-28 12:00:00 2017-08-28 18:00:00    1.60 
12 1661   2017-08-28 18:00:00 2017-08-29 06:00:00    1.94 
13 1661   2017-08-29 06:00:00 2017-08-29 12:00:00    5.22 
14 1661   2017-08-29 12:00:00 2017-08-30 06:00:00    0.759
15 1661   2017-08-30 06:00:00 2017-08-30 18:00:00    1.94 
16 1661   2017-08-30 18:00:00 2017-08-31 00:00:00    0.342
17 1661   2017-08-31 00:00:00 2017-08-31 06:00:00    0.281
18 1661   2017-08-31 06:00:00 2017-08-31 12:00:00    4.21 
19 1661   2017-08-31 12:00:00 2017-08-31 18:00:00    8.77 

Solution

  • library(tidyverse)
    library(VTrack)
    
    # example data
    dt = read.table(text = "
    Tag.ID TimeStep.coa        Latitude.coa Longitude.coa
     1 1657   2017-08-17_12:00:00         72.4         -81.1
     2 1657   2017-08-17_18:00:00         72.3         -81.1
     3 1658   2017-08-14_18:00:00         72.3         -81.2
     4 1658   2017-08-15_00:00:00         72.3         -81.3
     5 1659   2017-08-14_18:00:00         72.3         -81.1
     6 1659   2017-08-15_00:00:00         72.3         -81.2
     7 1660   2017-08-20_18:00:00         72.3         -81.1
     8 1660   2017-08-21_00:00:00         72.3         -81.2
     9 1660   2017-08-21_06:00:00         72.3         -81.2
    10 1660   2017-08-21_12:00:00         72.3         -81.3
    ", header=T)
    
    dt %>%
      group_by(Tag.ID) %>%
      mutate(Timestep1 = TimeStep.coa,
             Timestep2 = lead(TimeStep.coa),
             Distance = ComputeDistance(Latitude.coa, lead(Latitude.coa), 
                                        Longitude.coa, lead(Longitude.coa))) %>%
      ungroup() %>%
      na.omit() %>%
      select(Tag.ID, Timestep1, Timestep2, Distance)
    

    As a result you get this:

    # # A tibble: 6 x 4
    #     Tag.ID Timestep1           Timestep2             Distance
    #     <int> <fct>               <fct>                    <dbl>
    # 1   1657 2017-08-17_12:00:00 2017-08-17_18:00:00 11.1      
    # 2   1658 2017-08-14_18:00:00 2017-08-15_00:00:00  3.38     
    # 3   1659 2017-08-14_18:00:00 2017-08-15_00:00:00  3.38     
    # 4   1660 2017-08-20_18:00:00 2017-08-21_00:00:00  3.38     
    # 5   1660 2017-08-21_00:00:00 2017-08-21_06:00:00  0.0000949
    # 6   1660 2017-08-21_06:00:00 2017-08-21_12:00:00  3.38