I'm plotting x and y points. This results in a curved line, the line is first bending and then after a point its straight and after some time it bends again. I want to retrieve those two points. Though x is linear and y is plotted against x but y is not linearly dependent on x.
I tried matplotlib for plotting and numpy polynomial functions, and am currently looking into splines, but it seems that for these y
needs to be directly dependent on x
.
Your data is noisy, so you can't use a simple numerical derivative. Instead, as you may have found already, you should fit it with a spline and then check the curvature of the spline.
Keying off this answer, you can fit a spline and calculate the second derivative (curvature) like this:
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline
x = file['n']
y = file['Ds/2']
y_spline = UnivariateSpline(x, y)
x_range = np.linspace(x[0], x[-1], 1000) # or could use x_range = x
y_spline_deriv = y_spl.derivative(n=2)
curvature = y_spline_deriv(x_range)
Then you can find the start and end of the straight region like this:
straight_points = np.where(curvature.abs() <= 0.1)[0] # pick your threshold
start_idx = straight_points[0]
end_idx = straight_points[-1]
start_x = x_range[start_idx]
end_x = x_range[end_idx]
Alternatively, if you're mainly interested in finding the flattest part of the curve (as shown in your graphic), you could try calculating the first derivative and then finding regions where the slope is within some small amount of the minimum slope anywhere in the data. In that case, just substitute y_spline_deriv = y_spl.derivative(n=1)
in the code above.