I have a pandas dataframe in the following format:
df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4, 1.3, 1.1]})
df['aBins'] = pd.cut(df['a'], bins = np.arange(0,10,2), include_lowest = True)
Where the each bin is an Interval:
type(df['aBins'].iloc[0])
pandas._libs.interval.Interval
and the series stores them as categorical data:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 3 columns):
a 7 non-null int64
b 7 non-null float64
aBins 7 non-null category
dtypes: category(1), float64(1), int64(1)
memory usage: 263.0 bytes
I am trying to save this dataframe as a file so that it can be read back into a dataframe easily. I have tried saving it as a .csv file using .to_csv(), but when I read it back into pandas 'aBins' is read in as a string.
df.to_csv('test.csv', index = False)
df_reread = pd.read_csv('test.csv')
df_reread.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7 entries, 0 to 6
Data columns (total 3 columns):
a 7 non-null int64
b 7 non-null float64
aBins 7 non-null object
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes
Is there a good way to save and reread this dataframe so that is can be read back in to pandas in the same state?
You might want to check out pandas.DataFrame.to_pickle
and pandas.read_pickle
:
>>> df.to_pickle("./test.pkl")
...
...
>>> df = pd.read_pickle("./test.pkl")
>>> type(df['aBins'].iloc[0])
pandas._libs.interval.Interval