Consider this Autoencoder:
import numpy as np
from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D, Flatten, Reshape
from keras.models import Model
class ConvAutoencoder:
def __init__(self, image_size, latent_dim):
inp = Input(shape=(image_size[0], image_size[1], 1))
x = Conv2D(16, (3, 3), activation='relu', padding='same')(inp)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
d = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
d = UpSampling2D((2, 2))(d)
d = Conv2D(8, (3, 3), activation='relu', padding='same')(d)
d = UpSampling2D((2, 2))(d)
d = Conv2D(16, (3, 3), activation='relu')(d)
d = UpSampling2D((2, 2))(d)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(d)
self.model = Model(inp, decoded)
self.encoder = Model(inp, encoded)
self.model.compile(loss='mse', optimizer='Adam')
print(self.model.summary())
I instantiate it with
ConvAutoencoder(image_size=(32,32), latent_dim=10)
which prints
Model: "model_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 32, 32, 1) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 32, 32, 16) 160
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 16, 16, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 16, 16, 8) 1160
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 8, 8, 8) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 8, 8, 8) 584
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 4, 4, 8) 0
_________________________________________________________________
conv2d_4 (Conv2D) (None, 4, 4, 8) 584
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 8, 8, 8) 0
_________________________________________________________________
conv2d_5 (Conv2D) (None, 8, 8, 8) 584
_________________________________________________________________
up_sampling2d_2 (UpSampling2 (None, 16, 16, 8) 0
_________________________________________________________________
conv2d_6 (Conv2D) (None, 14, 14, 16) 1168
_________________________________________________________________
up_sampling2d_3 (UpSampling2 (None, 28, 28, 16) 0
_________________________________________________________________
conv2d_7 (Conv2D) (None, 28, 28, 1) 145
=================================================================
Total params: 4,385
Trainable params: 4,385
Non-trainable params: 0
_________________________________________________________________
None
As you can see, the input image size is (32,32)
but the output image size is (28,28)
.
* Question 1: How can I change the architecture of the autoencoder such that the output image size becomes (32,32)
?
* Question 2: As you can see, the class expects an argument called latent_dim
. Currently, this argument is unused. Is there an easy way of "forcing" the autoencoder's latent dimensions down to a certain number? E.g. adding a fully connected layer in the middle or something along those lines?
Question 1
Well, you forget a padding='same'
in the last upsampling.
It should looks like this
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
d = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
d = UpSampling2D((2, 2))(d)
d = Conv2D(8, (3, 3), activation='relu', padding='same')(d)
d = UpSampling2D((2, 2))(d)
d = Conv2D(16, (3, 3), activation='relu', padding='same')(d)
d = UpSampling2D((2, 2))(d)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(d)
Question 2
Do you mean the kernel? Then what about
x = Conv2D(latent_dim*4, (3, 3), activation='relu', padding='same')(inp)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(latent_dim*2, (3, 3), activation='relu', padding='same')(x)
x = MaxPooling2D((2, 2), padding='same')(x)
x = Conv2D(latent_dim, (3, 3), activation='relu', padding='same')(x)
encoded = MaxPooling2D((2, 2), padding='same')(x)
# at this point the representation is (4, 4, 8) i.e. 128-dimensional
d = Conv2D(latent_dim, (3, 3), activation='relu', padding='same')(encoded)
d = UpSampling2D((2, 2))(d)
d = Conv2D(latent_dim*2, (3, 3), activation='relu', padding='same')(d)
d = UpSampling2D((2, 2))(d)
d = Conv2D(latent_dim*4, (3, 3), activation='relu', padding='same')(d)
d = UpSampling2D((2, 2))(d)
But if you meant you want the middle layer to has a specific kernel size then you can replace the MaxPooling2D
to Conv2D
with stride like this.
encoded = Conv2D(latent_dim, (3, 3), activation='relu', padding='same', strides=2)(x)
Actually you can remove all the Maxpooling2D
and add the strides=2
to all the Conv2D
.