Given a Pandas Dataframe I evaluate several variables via groupby expressions applying a customized function. Works fine (ignoring the second 0-index-column for the moment), but I would also like to apply the function to the full DataFrame.
xxx = pd.DataFrame([['A',1],['A',2],['B',3]],columns=(['cls','val']))
xxx
cls val
0 A 1
1 A 2
2 B 3
def myagg(dat):
vmax=dat.val.max()
vmean=dat.val.mean()
return pd.DataFrame([[vmax,vmean]],columns=(['MaxV','MeanV']))
xxx.groupby('cls').apply(myagg)
yields
MaxV MeanV
cls
A 0 2 1.5
B 0 3 3.0
But xxx.apply(myagg) throws:
AttributeError: ("'Series' object has no attribute 'val'", 'occurred at index cls')
I can create a constant dummy Variable and group by it to receive the result I wish - but there surely will be simpler ways to do it. Why does pandas think of the frame without groupby as a series, if type(xxx) returns pandas.core.frame.DataFrame? I'm on pandas 0.23.4; python 3.6.
xxx['dummy']='test'
xxx.groupby('dummy').apply(myagg)
MaxV MeanV
dummy
test 0 3 2.0
It seems using a dummy function does the trick.
def dummy(dat):
return 1
xxx.groupby(dummy).apply(myagg)
and the result is as in the question. No need to modify the dataframe.