I would like to merge a large set of dataframes (about 30), which each have about 200 variables. These datasets are very much alike but not identical.
Please find two example dataframes below:
library(data.table)
library(haven)
df1 <- fread(
"A B C iso year
0 B 1 NLD 2009
1 A 2 NLD 2009
0 Y 3 AUS 2011
1 Q 4 AUS 2011
0 NA 7 NLD 2008
1 0 1 NLD 2008
0 1 3 AUS 2012",
header = TRUE
)
df2 <- fread(
"A B D E iso year
0 1 1 NA ECU 2009
1 0 2 0 ECU 2009
0 0 3 0 BRA 2011
1 0 4 0 BRA 2011
0 1 7 NA ECU 2008
1 0 1 0 ECU 2008
0 0 3 2 BRA 2012
1 0 4 NA BRA 2012",
header = TRUE
)
To recreate the error:
class(df2$B) <- "anything"
When I do the following
df_merged <- rbindlist(list(df1, df2), fill=TRUE, use.names=TRUE)
The dataset gives the error:
Error in rbindlist(list(df1, df2), fill = TRUE, use.names = TRUE) :
Class attribute on column 2 of item 2 does not match with column 2 of item 1.
What can I do to either:
rbindlist
skip the column which does not match and add some suffix.Desired result for option 1:
df_merged <- fread(
"A B B.x C D E iso year
0 A NA 1 NA NA NLD 2009
1 Y NA 2 NA NA NLD 2009
0 Q NA 3 NA NA AUS 2011
1 NA NA 4 NA NA AUS 2011
0 0 NA 7 NA NA NLD 2008
1 1 NA 1 NA NA NLD 2008
0 1 NA 3 NA NA AUS 2012
0 NA 1 NA 1 NA ECU 2009
1 NA 0 NA 2 0 ECU 2009
0 NA 0 NA 3 0 BRA 2011
1 NA 0 NA 4 0 BRA 2011
0 NA 1 NA 7 NA ECU 2008
1 NA 0 NA 1 0 ECU 2008
0 NA 0 NA 3 2 BRA 2012
1 NA 0 NA 4 NA BRA 2012",
header = TRUE
)
Desired result for option 2:
df_merged <- fread(
"A B C D E iso year
0 3 1 NA NA NLD 2009
1 4 2 NA NA NLD 2009
0 5 3 NA NA AUS 2011
1 5 4 NA NA AUS 2011
0 0 7 NA NA NLD 2008
1 1 1 NA NA NLD 2008
0 1 3 NA NA AUS 2012
0 1 NA 1 NA ECU 2009
1 0 NA 2 0 ECU 2009
0 0 NA 3 0 BRA 2011
1 0 NA 4 0 BRA 2011
0 1 NA 7 NA ECU 2008
1 0 NA 1 0 ECU 2008
0 0 NA 3 2 BRA 2012
1 0 NA 4 NA BRA 2012",",
header = TRUE
)
I came up with this inelegant solution that bypasses the problem. Basically, What I am doing is to assign the attributes of the columns of the first item of the list to the columns with the same names of all the other items of the list. Keep in mind that this solution is problematic and, depending on the project, it could be a very wrong practice as it has the potential to mess up your data. However, if what you need is to use rbindlist
to combine your dataframes, this makes the trick
dfs <- list(df1, df2)
varnames <- names(dfs[[1]]) # variable names
vattr <- purrr::map_chr(varnames, ~class(dfs[[1]][[.x]])) # variable attributes
for (i in seq_along(dfs)) {
# assign the same attributes of list 1 to the rest of the lists
for (j in seq_along(varnames)) {
if (varnames[[j]] %in% names(dfs[[i]])) {
class(dfs[[i]][[varnames[[j]]]]) <- vattr[[j]]
}
}
}
df_merged <- data.table::rbindlist(dfs, fill=TRUE, use.names=TRUE)
Best,