I am reading 10 million records from BigQuery and doing some transformation and creating the .csv file, the same .csv stream data I am uploading to SFTP server using Node.JS.
This job taking approximately 5 to 6 hrs to complete the request locally.
Solution has been delpoyed on GCP Cloud run but after 2 to 3 second cloud run is closing the container with 503 error.
Please find below configuration of GCP Cloud Run.
Autoscaling: Up to 1 container instances CPU allocated: default Memory allocated: 2Gi Concurrency: 10 Request timeout: 900 seconds
Is GCP Cloud Run is good option for long running background process?
You can try using an Apache Beam pipeline deployed via Cloud Dataflow. Using Python, you can perform the task with the following steps:
Stage 1. Read the data from BigQuery table.
beam.io.Read(beam.io.BigQuerySource(query=your_query,use_standard_sql=True))
Stage 2. Upload Stage 1 result into a CSV file on a GCS bucket.
beam.io.WriteToText(file_path_prefix="", \
file_name_suffix='.csv', \
header='list of csv file headers')
Stage 3. Call a ParDo function which will then take CSV file created in Stage 2 and upload it to the SFTP server. You can refer this link.