Search code examples
rparallel-processingr-futurefurrr

Running parLapply and future_map inside another function unnecessarily copies large objects to each worker


I was looking for an alternative to furrr:future_map() because when this function is run inside another function it copies all objects defined inside that function to each worker regardless of whether those objects are explicitly passed (https://github.com/DavisVaughan/furrr/issues/26).

It looks like parLapply() does the same thing when using clusterExport():

fun <- function(x) {
  big_obj <- 1
  cl <- parallel::makeCluster(2)
  parallel::clusterExport(cl, c("x"), envir = environment())
  parallel::parLapply(cl, c(1), function(x) {
    x + 1
    env <- environment()
    parent_env <- parent.env(env)
    return(list(this_env = env, parent_env = parent_env))
  })
}

res <- fun(1)
names(res[[1]]$parent_env)
#> [1] "cl"      "big_obj" "x"

Created on 2020-01-06 by the reprex package (v0.3.0)

How can I keep big_obj from getting copied to each worker? I am using a Windows machine so forking isn't an option.


Solution

  • You can change the environment of your local function so that it does not include big_obj by assigning e.g. only the base environment.

    fun <- function(x) {
      big_obj <- 1
      cl <- parallel::makeCluster(2)
      on.exit(parallel::stopCluster(cl), add = TRUE)
      parallel::clusterExport(cl, c("x"), envir = environment())
      local_fun <- function(x) {
        x + 1
        env <- environment()
        parent_env <- parent.env(env)
        return(list(this_env = env, parent_env = parent_env))
      }
      environment(local_fun) <- baseenv()
      parallel::parLapply(cl, c(1), local_fun)
    }
    res <- fun(1)
    "big_obj" %in% names(res[[1]]$parent_env) # FALSE