I'm trying to solve for parameters M, D, and O given an input frequency (FIN) and desired output frequency (FOUT
). FOUT = (FIN * M)/(D*O)
. I also have to maximize FVCO
. FVCO = (FIN * M)/D
.
M and O have to be a multiple of 0.125 and D has to be a whole number.
I've been trying to use scipy.optimize.minimize to accomplish this but struggling to find away to restrict the values tried for M and O to multiples of 0.125 and restrict D to be an integer.
Is there a library that I can use to accomplish this or will I have to implement my own algorithm?
What I have tried so far:
FIN = 100.0
FOUT = 4.69
MMCM_FIN_MAX = 800.0
MMCM_FIN_MIN = 10.0
MMCM_FOUT_MAX = 800.0
MMCM_FOUT_MIN = 4.69
MMCM_FVCO_MIN = 600.0
MMCM_FVCO_MAX = 1200.0
MMCM_FPFD_MAX = 450.0
MMCM_FPFD_MIN = 10.0
D_MIN = int(math.ceil(FIN/MMCM_FPFD_MAX))
D_MAX = int(math.floor(FIN/MMCM_FPFD_MIN))
M_MIN = math.ceil((MMCM_FVCO_MIN/FIN)*D_MIN)
M_MAX = math.floor((MMCM_FVCO_MAX/FIN)*D_MAX)
O_MIN = 1.0
O_MAX = 128.0
def objective(x):
return -FIN*(x[0]/x[1])
def constraint1(x):
return FIN*(x[0]/(x[1]*x[2])) - FOUT
def constraint2(x):
return -FIN*(x[0]/x[1]) + MMCM_FVCO_MAX
def constraint3(x):
return FIN*(x[0]/x[1]) - MMCM_FVCO_MIN
x0 = [1, 1, 1]
b1 = (M_MIN, M_MAX)
b2 = (D_MIN, D_MAX)
b3 = (O_MIN, O_MAX)
bnds = (b1, b2, b3)
con1 = {'type': 'eq', 'fun': constraint1}
con2 = {'type': 'ineq', 'fun': constraint2}
con3 = {'type': 'ineq', 'fun': constraint3}
cons = [con1, con2, con3]
sol = minimize(objective, x0, method='SLSQP', bounds=bnds, constraints=cons, options = {'eps': 0.125})
print(sol)
This seems to give me a solution that are within the constraints but the array it returned with the M, D, and O values tried aren't multiples of 0.125 or integer values.
Maybe z3py, a SAT/SMT solver is useful for this problem:
from z3 import *
given_FIN = 200
given_FOUT = 1000
D = Int('D')
M8 = Int('M8') # 8 times M
O8 = Int('O8') # 8 times O
FIN = Real('FIN')
FOUT = Real('FOUT')
FVCO = Real('FVCO')
s = Optimize()
s.add(FIN == given_FIN)
s.add(FOUT == given_FOUT)
s.add(D > 0)
s.add(FOUT == (FIN * M8 / 8) / (D * (O8 / 8)))
s.add(FVCO == (FIN * M8 / 8) / D )
s.maximize(FVCO)
res = s.check()
print(res)
if res != sat:
print("No solution found")
else:
m = s.model()
print("Found solution:")
print(" FIN =", m[FIN])
print(" FOUT =", m[FOUT].numerator_as_long() / m[FOUT].denominator_as_long())
print(" D =", m[D])
print(" M = ", m[M8].as_long() / 8)
print(" O =", m[O8].as_long() / 8)
print(" FVCO =", m[FVCO].numerator_as_long() / m[FVCO].denominator_as_long())
Output:
sat
Found solution:
FIN = 200
FOUT = 100.0
D = 1
M = 0.5
O = 0.0
FVCO = 100.0