I needed a function for get the p-values of multiple Chi-Square tests in a Matrix Looking for, I found this code:
chisqmatrix <- function(x) {
names = colnames(x); num = length(names)
m = matrix(nrow=num,ncol=num,dimnames=list(names,names))
for (i in 1:(num-1)) {
for (j in (i+1):num) {
m[i,j] = chisq.test(x[,i],x[,j],)$p.value
}
}
return (m)
}
mat = chisqmatrix(DATAFRAME)
mat
And works perfectly!
but the problem is that I need that this function omit the NA values.
I can't just omit the NA values in all the dataframe, I need them to be omitted for each pair in the function
So when x[,i]
select the columns How can I implement that for only take the values that are not null. I tried things like !="NA" but not correctly way.
Thanks you!
You really need to provide reproducible data. As documented on the manual page, chisq.test
removes missing values before computing:
set.seed(42)
x <- matrix(sample(c(LETTERS[1:3], NA), 100, replace=TRUE), 20, 5)
x <- data.frame(x)
head(x)
# X1 X2 X3 X4 X5
# 1 A C C A <NA>
# 2 A C C B A
# 3 A A B B B
# 4 A A B B A
# 5 B C <NA> B A
# 6 <NA> <NA> <NA> B <NA>
x.chi <- chisq.test(x[, 1], x[, 2])
# Warning message:
# In chisq.test(x[, 1], x[, 2]) : Chi-squared approximation may be incorrect
x.chi$observed
# x[, 2]
# x[, 1] A B C
# A 3 1 3
# B 2 1 2
sum(x.chi$observed) # How many observations in x.chi?
[1] 12
nrow(na.omit(x[, 1:2])) $ How many rows in x after removing NAs?
[1] 12
Your function will do exactly what you want it to do.