suppose you have given list of all item you can have and separately you have list of data and whose shape of list is not fixed it may contain any number of item you wished to create a dataframe from it and you have to put it on write column for example
columns = ['shirt','shoe','tie','hat']
data = [['hat','tie'],
['shoe', 'tie', 'shirt'],
['tie', 'shirt',]]
# and from this I wants to create a dummy variable like this
shirt shoe tie hat
0 0 0 1 1
1 1 1 1 0
2 1 0 1 0
If want indicator columns filled by 0
and 1
only use MultiLabelBinarizer
with DataFrame.reindex
if want change ordering of columns by list and if possible some value not exist add only 0
column:
columns = ['shirt','shoe','tie','hat']
data = [['hat','tie'],
['shoe', 'tie', 'shirt'],
['tie', 'shirt',]]
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
df = (pd.DataFrame(mlb.fit_transform(data),columns=mlb.classes_)
.reindex(columns, axis=1, fill_value=0))
print (df)
shirt shoe tie hat
0 0 0 1 1
1 1 1 1 0
2 1 0 1 0
df = pd.Series(data).str.join('|').str.get_dummies().reindex(columns, axis=1, fill_value=0)
print (df)
shirt shoe tie hat
0 0 0 1 1
1 1 1 1 0
2 1 0 1 0