I am trying to predict a three-level factor with a set of variables. The group is A, B and C.
m<-glm(as.factor(Group)~Sex+BloodType+Pressure,data=Hel,family = "binomial")
newdata <- data.frame(Sex="M",BloodType="A+", Pressure=80)
predict(m,newdata)
and this returns:
1
0.7133324
I would like that to give me back:
A B C
20.00 40.00 40.000
How can I do this? Thanks.
I guess you have to use something that allows multinomial regression like nnet?
library(nnet)
trn = sample(1:nrow(iris),100)
fit_nnet <- multinom(Species ~ ., iris[trn,])
head(predict(fit_nnet,iris[-trn,],type="prob"))
setosa versicolor virginica
7 1.0000000 2.348893e-11 2.166176e-58
9 0.9999323 6.765017e-05 2.438304e-52
10 0.9999940 6.035319e-06 1.530614e-56
12 1.0000000 1.355834e-09 1.315066e-57