I have created df1
year gvkey capex ppent
2004 1004 13.033 139.137
2005 1004 16.296 213.380
2006 1004 29.891 260.167
2007 1004 30.334 310.393
2008 1004 27.535 245.586
2009 1004 28.855 334.430
...
I have created df2
year gvkey ROA
2005 1004 0.02796478
2006 1004 0.04665171
2007 1004 0.05976127
2008 1004 0.06255035
2009 1004 0.03549220
2005 1013 0.06882688
...
I wan to create df3
year gvkey ROA lag_investment
2005 1004 0.02796478 capex from 2004 / ppent from 2004
2006 1004 0.04665171 capex from 2005 / ppent from 2005
2007 1004 0.05976127 capex from 2006 / ppent from 2006
2008 1004 0.06255035 capex from 2007 / ppent from 2007
2009 1004 0.03549220 capex from 2008 / ppent from 2008
2005 1013 0.06882688 capex from 2004 / ppent from 2004
...
I have over 2,000 firms years. gvkey = firm id
What I basically want to do is the following:
1) compute the investment for the previous year from df1
2) create a column called "lag_investment" in df2
2) insert the value from step 1) in the current year row in df2
Additional question:
How would the code look like if I want to do the following?
I have created df1
year gvkey ROA ppent capex
1 2004 1004 0.01320911 139.137 13.033
2 2005 1004 0.03005708 213.380 16.296
3 2006 1004 0.05014214 260.167 29.891
4 2007 1004 0.06423255 310.393 30.334
5 2008 1004 0.06723031 245.586 27.535
6 2009 1004 0.03814769 334.430 28.855
...
I want to add a variable to df1
year gvkey ROA ppent capex lag_investment
1 2004 1004 0.01320911 139.137 13.033
2 2005 1004 0.03005708 213.380 16.296 capex from 2004 / ppent from 2004
3 2006 1004 0.05014214 260.167 29.891 capex from 2005 / ppent from 2005
4 2007 1004 0.06423255 310.393 30.334 capex from 2006 / ppent from 2006
5 2008 1004 0.06723031 245.586 27.535 capex from 2007 / ppent from 2007
6 2009 1004 0.03814769 334.430 28.855 capex from 2008 / ppent from 2008
...
I want to calculate the lag_investment for all years except 2004.
Thank you so much!!!
With data.table
, we can do
library(data.table)
setDT(df1)[, lag_investment :=Reduce(`/`, shift(.SD)), .SDcols = c("capex", "ppent")]
df1
# year gvkey ROA ppent capex lag_investment
#1: 2004 1004 0.01320911 139.137 13.033 NA
#2: 2005 1004 0.03005708 213.380 16.296 0.09367027
#3: 2006 1004 0.05014214 260.167 29.891 0.07637079
#4: 2007 1004 0.06423255 310.393 30.334 0.11489159
#5: 2008 1004 0.06723031 245.586 27.535 0.09772772
#6: 2009 1004 0.03814769 334.430 28.855 0.11211958
Or in base R
df1$lag_investment <- with(df1, c(NA, head(capex, -1)/head(ppent, -1)))
Or it can be written as
df1$lag_investment <- with(df1, c(NA, capex[-nrow(df1)]/ppent[-nrow(df1)]))
df1 <- structure(list(year = 2004:2009, gvkey = c(1004L, 1004L, 1004L,
1004L, 1004L, 1004L), ROA = c(0.01320911, 0.03005708, 0.05014214,
0.06423255, 0.06723031, 0.03814769), ppent = c(139.137, 213.38,
260.167, 310.393, 245.586, 334.43), capex = c(13.033, 16.296,
29.891, 30.334, 27.535, 28.855)), class = "data.frame",
row.names = c("1",
"2", "3", "4", "5", "6"))