I have the following dataframe called df
that contains 2 columns:
In [4]: df.head(20)
Out[4]:
age age_band
0 NaN NaN
1 61.0 55-64
2 NaN NaN
3 55.0 55-64
4 NaN NaN
5 67.0 65+
6 NaN NaN
7 20.0 18-24
8 53.0 45-54
9 NaN NaN
10 NaN NaN
11 23.0 18-24
12 60.0 55-64
13 NaN NaN
14 54.0 45-54
15 NaN NaN
16 67.0 65+
17 NaN NaN
18 50.0 45-54
19 70.0 65+
In [5]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 107632 entries, 0 to 107631
Data columns (total 2 columns):
age 73289 non-null float64
age_band 73289 non-null object
dtypes: float64(1), object(1)
memory usage: 1.6+ MB
In [7]: df["age_band"].value_counts()
Out[7]:
45-54 22461
55-64 17048
35-44 14582
65+ 12990
25-34 4078
18-24 2130
Name: age_band, dtype: int64
In [8]: df["age"].min()
Out[8]: 19.0
In [9]: df["age"].max()
Out[9]: 74.0
AIM:
I want to plot a histogram for df["age"]
using hvplot. In this plot, I would like to place the ages into bins that correspond with my df["age_band"]
column values. The following plot does this:
In [10]: df.hvplot.hist("age",bins=[18,25,35,45,55,65,74],xticks=[18,25,35,45,55,65,74],hover_cols
...: =["age_band"],line_width=4,line_color="w")
When you hover over each bin, the count for each age_band
correctly displays as Count
, however, rather than each age band
value, it seems to display the mean or median age
for each bin.
Upon further investigation, it appears that setting hover_cols="age_band"
actually had no effect on the plot (you get an identical plot if it is omitted.)
I then tried to use HoverTool:
In [11]: from bokeh.models import HoverTool
...:
...: hover = HoverTool(tooltips=df["age_band"].dropna())
...:
...: df.hvplot.hist("age",bins=[18,25,35,45,55,65,74],xticks=[18,25,35,45,55,65,74],line_width
...: =4,line_color="w").opts(tools=[hover])
However I got the following error:
ValueError: expected an element of either String or List(Tuple(String, String)), got 1 55-64
So then I tried:
In [12]: from bokeh.models import HoverTool
...:
...: hover = HoverTool(tooltips="age_band")
...:
...: df.hvplot.hist("age",bins=[18,25,35,45,55,65,74],xticks=[18,25,35,45,55,65,74],line_wi
...: dth=4,line_color="w").opts(tools=[hover])
Which resulted in:
So then I also tried:
In [13]: hover = HoverTool(tooltips=[("18-24","2130"),("25-34","4078"),("35-44","14582"),("45-54",
...: "22461"),("55-64","17048"),("65+","12990")])
...:
...: df.hvplot.hist("age",bins=[18,25,35,45,55,65,74],xticks=[18,25,35,45,55,65,74],line_width
...: =4,line_color="w").opts(tools=[hover])
Which resulted in the following:
Is there a way to produce a histogram of df["age"]
, using hvplot.hist, where when you hover over a bin then you are presented with the corresponding age_band
& Count
of age_band
?
Thanks
Setting by=['age_band'] should work and should show you that column when you hover:
df.hvplot.hist(
y='age',
by=['age_band'],
legend=False,
color='lightblue',
bins=[18,25,35,45,55,65,74],
xticks=[18,25,35,45,55,65,74],
)
Although in the case you describe you could also choose to create a barplot on the value_counts:
age_band_counts = df['age_band'].value_counts().sort_index()
age_band_counts.hvplot.bar(bar_width=1.0)