I am new to Golang and am trying to use goroutines so that they can talk among them. I have some code which starts up a goroutine which has operation1, I call it to dance. When it finishes, it signals another goroutine which performs another operation2, let's say sleep.
You can pass a force dance parameter to the dance goroutine but if it is already in the dance state, it would sleep.
package main
import (
"fmt"
"time"
)
func main(){
test("notdancing", true)
time.Sleep(10*time.Second)
}
func dance()error{
fmt.Println("Tapping my feet")
time.Sleep(10*time.Second)
return nil
}
func test(status string, forceDance bool) {
This does not work when
//startSleep := make(chan bool)
Why does a channel need to be provided a buffer length to make it work? I tried without the buffer length but it says all goroutines are asleep if I don't pass 1 as the second parameter.
startdance := make(chan bool, 1)
startSleep := make(chan bool, 1)
if status == "dancing" && forceDance {
select {
case startSleep <-true:
fmt.Println("Would start to sleep now")
default:
fmt.Println("Sleep Already started. No need to force")
}
}
if status != "dancing" {
fmt.Println("Startingdance")
startdance <- true
}
go func() {
<-startdance
err := dance()
if err == nil {
select {
case startSleep <- true:
fmt.Println("Starting Sleeping, dancing completed")
default:
fmt.Println("Already started Sleeping")
}
} else {
fmt.Println("Not in a mood to dance today")
}
}()
go func() {
<-startSleep
if forceDance {
fmt.Println("Force sleep because forcing to dance while already dancing")
}
}()
}
I would highly appreciate any corrections to the code as well as the pitfalls of using this approach.
in case of Unbuffered Channel (when size is not specified) it can't hold a value as it has no size. therefore a reader has to be present at the time of writing/transmiting the data through the channel or else it will be blocking the call.
func main() {
startDance := make(chan bool)
startDance <- true
}
But when you specify a size in the above code (say 1) then it won't be a deadlock as it will have space to hold the data. ((https://robertbasic.com/blog/buffered-vs-unbuffered-channels-in-golang/) .)(https://www.golang-book.com/books/intro/10) you could check out the above website's to get a better understanding about channels and concurrency
package main
import (
"fmt"
"time"
)
func main() {
startDance := make(chan bool)
startSleep := make(chan bool)
forceSleep := make(chan bool)
go startDance1(startDance, forceSleep, startSleep)
go performSleep(startSleep, startDance)
startDance <- true
fmt.Println("now dance is started ")
forceSleep <- true
select {}
}
func startDance1(startDance chan bool, forceSleep chan bool, startSleep chan bool) {
fmt.Println("waiting to start dance")
select {
case <-startDance:
fmt.Println("staring dance")
}
for {
select {
case <-startDance:
fmt.Println("starting dance")
case <-forceSleep:
fmt.Println("aleardy dancing going to sleep")
select {
case startSleep <- true:
default:
}
default:
//this is just to show working this
// i added default or else this will go into deadlock
fmt.Println("dancing")
time.Sleep(time.Second * 1)
}
}
}
func performSleep(startSleep chan bool, startDance chan bool) {
select {
case <-startSleep:
fmt.Println("staring sleep")
}
fmt.Println("sleeping for 5 seconds ")
time.Sleep(time.Second * 5)
select {
case startDance <- true:
fmt.Println("started dance")
default:
fmt.Println("failed to start dance ")
}
}
Above code is a minor improvement over yours (i tried to make it according to your requirements). I would suggest you go through some books to get to know more about go concurrency (https://www.golang-book.com/books/intro/10_