Want to find x , from Ax=b .First of all I have declared two matrices , A
which is nxn
and B
nx1
. Their formulas can be seen below.
For A:
The matrices can take any n
. In my code I'm giving it a value of 10
. I declare them by set them to zero
first . Then f I declare each element of 1,2
and n-1
and n
line for both matrices . For A
I also loop each number to get the desired look , each same number goes one col and row forward , from n=2
until n-2
. Then for calculating the Ax=b
, for finding x
, I use the multiplication :
x = np.dot(np.linalg.inv(A), b)
but doesn't get the correct answer . Any help ? I'm posting also my code in its entirety:
import numpy as np
n = 10
################## AAAAA matrix #############################################
A = np.zeros([n, n], dtype=float) # initialize to f zeros
# ------------------first row
A[0][0] = 6
A[0][1] = -4
A[0][2] = 1
# ------------------second row
A[1][0] = -4
A[1][1] = 6
A[1][2] = -4
A[1][3] = 1
# --------------two last rows-----
# n-2 row
A[- 2][- 1] = -4
A[- 2][- 2] = 6
A[- 2][- 3] = -4
A[- 2][- 4] = 1
# n-1 row
A[- 1][- 1] = 6
A[- 1][- 2] = -4
A[- 1][- 3] = 1
# --------------------------- from second to n-2 row --------------------------#
j = 0
for i in range(2, n - 2):
if j == (n - 4):
break
A[i][j] = 1
j = j + 1
j = 1
for i in range(2, n - 2):
if j == (n - 3):
break
A[i][j] = -4
j = j + 1
j = 2
for i in range(2, n - 2):
if j == (n - 2):
break
A[i][j] = 6
j = j + 1
j = 3
for i in range(2, n - 2):
if j == (n - 1):
break
A[i][j] = -4
j = j + 1
j = 4
for i in range(2, n - 2):
if j == (n):
break
A[i][j] = 1
j = j + 1
# -----------------------------end coding of 2nd to n-2 r-------------#
print("\nMatrix A is : \n", A)
####### b matrix ######################################
b = np.zeros(n,float).reshape((n,1))
b[0] = 3
b[1] = -1
#b[len(b) - 1] = 3
#b[len(b) - 2] = -1
b[[0,-1]]=3; b[[1,-2]]=-1
print("\nMatrix b is \n", b)
#################### result ########################
x = np.dot(np.linalg.inv(A), b)
print("\n\n The result is : \n", x)
Actually I get all 1s
for result , as you can see :
Using matmul
method makes it:
import numpy as np
A = np.array([[1,2], [3,4]], dtype=float)
B = np.array([[3], [4]])
print(np.matmul(np.linalg.inv(A), B))