My problem: integrate.quad does not work with my input parameters (dataFrames).
My goal: Calculating expected value for a defined function and specific mu, sigma, lower bound and upper bound of integral per product
Desired output: 2x2 dataFrame
1 2
Product1 0.000000e+00 0.000000e+00
Product2 2.929601072372639e-40 1.6332471427821411e-52
My approach:
Here is the full code:
import pandas as pd
import scipy.stats
import scipy.integrate as integrate
# Input parameters as dataframes
mu = pd.DataFrame({'1': [7, 12],
'2': [7.50, 16.97]},
index=["Product1", "Product2"])
sigma = pd.DataFrame({'1': [0.07, 0.6],
'2': [0.075, 0.848]},
index=["Product1", "Product2"])
input = pd.DataFrame({'1': [1, 2]},
index=["Product1", "Product2"])
ubIntegration = pd.DataFrame({'1': [2, 4]},
index=["Product1", "Product2"])
# Definition of function: y*pdf(y)
def function(y, mu, sigma):
return y * scipy.stats.norm.pdf(y, mu, sigma)
# Calculation of expected value through integration of "function"
for i in mu.index.values:
for k in mu.columns.values:
lb = 0
ub = ubIntegration.loc[i]
EV, err = integrate.quad(function, lb, ub, args=(mu.loc[i,k], sigma.loc[i,k]))
Your ub
contains two values, which is obviously illegal. Simply loop over them:
# Calculation of expected value through integration of "function"
for i in mu.index.values:
for k in mu.columns.values:
lb = 0
for ub in ubIntegration.loc[i]:
EV, err = integrate.quad(function, lb, ub, args=(mu.loc[i,k], sigma.loc[i,k]))
print(EV, err)
0.0 0.0
0.0 0.0
2.929601072372639e-40 1.424432202967594e-41
1.6332471427821411e-52 5.351027607956578e-55