I've found questions (like this one) asking what [[carries_dependency]]
does, and that's not what I'm asking here.
I want to know when you shouldn't use it, because the answers I've read all make it sound like you can plaster this code everywhere and magically you'd get equal or faster code. One comment said the code can be equal or slower, but the poster didn't elaborate.
I imagine appropriate places to use this is on any function return or parameter that is a pointer or reference and that will be passed or returned within the calling thread, and it shouldn't be used on callbacks or thread entry points.
Can someone comment on my understanding and elaborate on the subject in general, of when and when not to use it?
EDIT: I know there's this tome on the subject, should any other reader be interested; it may contain my answer, but I haven't had the chance to read through it yet.
because the answers I've read all make it sound like you can plaster this code everywhere and magically you'd get equal or faster code
The only way you can get faster code is when that annotation allows the omission of a fence.
So the only case where it could possibly be useful is:
That's a bunch of necessary conditions to possibly get measurably faster code.
(And the latest trend in the C++ community is to give up inventing a proper compiling scheme that's safe in all cases and to come up with a completely different way for the user to instruct the compiler to produce code that "consumes" values, with much more explicit, naively translatable, C++ code.)
One comment said the code can be equal or slower, but the poster didn't elaborate.
Of course annotations of the kind that you can randomly put on programs simply cannot make code more efficient in general! That would be too easy and also self contradictory.
Either some annotation specifies a constrain on your code, that is a promise to the compiler, and you can't put it anywhere where it doesn't correspond an guarantee in the code (like noexcept
in C++, restrict
in C), or it would break code in various ways (an exception in a noexcept
function stops the program, aliasing of restricted pointers can cause funny miscompilation and bad behavior (formerly the behavior is not defined in that case); then the compiler can use it to optimize the code in specific ways.
Or that annotation doesn't constrain the code in any way, and the compiler can't count on anything and the annotation does not create any more optimization opportunity.
If you get more efficient code in some cases at no cost of breaking program with an annotation then you must potentially get less efficient code in other cases. That's true in general and specifically true with consume semantic, which imposes the previously described constrained on translation of C++ constructs.
I imagine appropriate places to use this is on any function return or parameter that is a pointer or reference and that will be passed or returned within the calling thread
No, the one and only case where it might be useful is when the intended calling function will probably use consume memory order.