Spoiler alert: I posted my solution as an answer to this question
I am using flastk-resptlus to create an API. I have to provide the data in a specific structure, which I have problems to get, see an example below:
What I need to get is this structure:
{
"metadata": {
"files": []
},
"result" : {
"data": [
{
"user_id": 1,
"user_name": "user_1",
"user_role": "editor"
},
{
"user_id": 2
"user_name": "user_2",
"user_role": "editor"
},
{
"user_id": 3,
"user_name": "user_3",
"user_role": "curator"
}
]
}
}
But the problem comes that I cannot manage to get the structure of "result" : { "data": []}
without making "data" a model itself.
What I tried to do so far (and did not work)
# define metadata model
metadata_model = api.model('MetadataModel', {
"files": fields.List(fields.String(required=False, description='')),
}
# define user model
user_model = api.model('UserModel', {
"user_id": fields.Integer(required=True, description=''),
"user_name": fields.String(required=True, description=''),
"user_role": fields.String(required=False, description='')
}
# here is where I have the problems
user_list_response = api.model('ListUserResponse', {
'metadata': fields.Nested(metadata_model),
'result' : {"data" : fields.List(fields.Nested(user_model))}
})
Complains that cannot get the "schema" from "data"
(because is not a defined model), but I don't want to be a new api model, just want to append a key called "data". Any suggestions?
This I tried and works, but is not what I want (because I miss the "data"):
user_list_response = api.model('ListUserResponse', {
'metadata': fields.Nested(metadata_model),
'result' : fields.List(fields.Nested(user_model))
})
I don't want data
to be a model because the common structure of the api is the following:
{
"metadata": {
"files": []
},
"result" : {
"data": [
<list of objects> # here must be listed the single model
]
}
}
Then, <list of objects>
can be users, addresses, jobs, whatever.. so I want to make a "general structure" in which then I can just inject the particular models (UserModel, AddressModel, JobModel, etc) without creating a special data
model for each one.
My workaround solution that solves all my problems:
I create a new List fields class (it is mainly copied from fields.List), and then I just tune the output format and the schema in order to get the 'data' as key:
class ListData(fields.Raw):
'''
Field for marshalling lists of other fields.
See :ref:`list-field` for more information.
:param cls_or_instance: The field type the list will contain.
This is a modified version of fields.List Class in order to get 'data' as key envelope
'''
def __init__(self, cls_or_instance, **kwargs):
self.min_items = kwargs.pop('min_items', None)
self.max_items = kwargs.pop('max_items', None)
self.unique = kwargs.pop('unique', None)
super(ListData, self).__init__(**kwargs)
error_msg = 'The type of the list elements must be a subclass of fields.Raw'
if isinstance(cls_or_instance, type):
if not issubclass(cls_or_instance, fields.Raw):
raise MarshallingError(error_msg)
self.container = cls_or_instance()
else:
if not isinstance(cls_or_instance, fields.Raw):
raise MarshallingError(error_msg)
self.container = cls_or_instance
def format(self, value):
if isinstance(value, set):
value = list(value)
is_nested = isinstance(self.container, fields.Nested) or type(self.container) is fields.Raw
def is_attr(val):
return self.container.attribute and hasattr(val, self.container.attribute)
# Put 'data' as key before the list, and return the dict
return {'data': [
self.container.output(idx,
val if (isinstance(val, dict) or is_attr(val)) and not is_nested else value)
for idx, val in enumerate(value)
]}
def output(self, key, data, ordered=False, **kwargs):
value = fields.get_value(key if self.attribute is None else self.attribute, data)
if fields.is_indexable_but_not_string(value) and not isinstance(value, dict):
return self.format(value)
if value is None:
return self._v('default')
return [marshal(value, self.container.nested)]
def schema(self):
schema = super(ListData, self).schema()
schema.update(minItems=self._v('min_items'),
maxItems=self._v('max_items'),
uniqueItems=self._v('unique'))
# work around to get the documentation as I want
schema['type'] = 'object'
schema['properties'] = {}
schema['properties']['data'] = {}
schema['properties']['data']['type'] = 'array'
schema['properties']['data']['items'] = self.container.__schema__
return schema