Search code examples
machine-learningdeep-learningconv-neural-networktransfer-learningvgg-net

How to create a sub-model based on fine-tuned VGGNet16


The following network architecture is designed in order to find the similarity between two images.

Initially, I took VGGNet16 and removed the classification head:

vgg_model = VGG16(weights="imagenet", include_top=False,
input_tensor=Input(shape=(img_width, img_height, channels)))

Afterward, I set the parameter layer.trainable = False, so that the network will work as a feature extractor.

I passed two different images to the network:

encoded_left = vgg_model(input_left)
encoded_right = vgg_model(input_right)

This will produce two feature vectors. Then for the classification (whether they are similar or not), I used a metric network that consists of 2 convolution layers followed by pooling and 4 fully connected layers.

merge(encoded_left, encoded_right) -> conv-pool -> conv-pool -> reshape -> dense * 4 -> output

Hence, the model looks like:

model = Model(inputs=[left_image, right_image], outputs=output)

After training only metric network, for fine-tuning convolution layers, I set the last convo block for training. Therefore, in the second training phase, along with the metric network, the last convolution block is also trained.

Now I want to use this fine-tuned network for another purpose. Here is the network summary:

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to
==================================================================================================
input_1 (InputLayer)            (None, 224, 224, 3)  0
__________________________________________________________________________________________________
input_2 (InputLayer)            (None, 224, 224, 3)  0
__________________________________________________________________________________________________
vgg16 (Model)                   (None, 7, 7, 512)    14714688    input_1[0][0]
                                                                 input_2[0][0]
__________________________________________________________________________________________________
Merged_feature_map (Concatenate (None, 7, 7, 1024)   0           vgg16[1][0]
                                                                 vgg16[2][0]
__________________________________________________________________________________________________
mnet_conv1 (Conv2D)             (None, 7, 7, 1024)   4195328     Merged_feature_map[0][0]
__________________________________________________________________________________________________
batch_normalization_1 (BatchNor (None, 7, 7, 1024)   4096        mnet_conv1[0][0]
__________________________________________________________________________________________________
activation_1 (Activation)       (None, 7, 7, 1024)   0           batch_normalization_1[0][0]
__________________________________________________________________________________________________
mnet_pool1 (MaxPooling2D)       (None, 3, 3, 1024)   0           activation_1[0][0]
__________________________________________________________________________________________________
mnet_conv2 (Conv2D)             (None, 3, 3, 2048)   8390656     mnet_pool1[0][0]
__________________________________________________________________________________________________
batch_normalization_2 (BatchNor (None, 3, 3, 2048)   8192        mnet_conv2[0][0]
__________________________________________________________________________________________________
activation_2 (Activation)       (None, 3, 3, 2048)   0           batch_normalization_2[0][0]
__________________________________________________________________________________________________
mnet_pool2 (MaxPooling2D)       (None, 1, 1, 2048)   0           activation_2[0][0]
__________________________________________________________________________________________________
reshape_1 (Reshape)             (None, 1, 2048)      0           mnet_pool2[0][0]
__________________________________________________________________________________________________
fc1 (Dense)                     (None, 1, 256)       524544      reshape_1[0][0]
__________________________________________________________________________________________________
batch_normalization_3 (BatchNor (None, 1, 256)       1024        fc1[0][0]
__________________________________________________________________________________________________
activation_3 (Activation)       (None, 1, 256)       0           batch_normalization_3[0][0]
__________________________________________________________________________________________________
fc2 (Dense)                     (None, 1, 128)       32896       activation_3[0][0]
__________________________________________________________________________________________________
batch_normalization_4 (BatchNor (None, 1, 128)       512         fc2[0][0]
__________________________________________________________________________________________________
activation_4 (Activation)       (None, 1, 128)       0           batch_normalization_4[0][0]
__________________________________________________________________________________________________
fc3 (Dense)                     (None, 1, 64)        8256        activation_4[0][0]
__________________________________________________________________________________________________
batch_normalization_5 (BatchNor (None, 1, 64)        256         fc3[0][0]
__________________________________________________________________________________________________
activation_5 (Activation)       (None, 1, 64)        0           batch_normalization_5[0][0]
__________________________________________________________________________________________________
fc4 (Dense)                     (None, 1, 1)         65          activation_5[0][0]
__________________________________________________________________________________________________
batch_normalization_6 (BatchNor (None, 1, 1)         4           fc4[0][0]
__________________________________________________________________________________________________
activation_6 (Activation)       (None, 1, 1)         0           batch_normalization_6[0][0]
__________________________________________________________________________________________________
reshape_2 (Reshape)             (None, 1)            0           activation_6[0][0]
==================================================================================================
Total params: 27,880,517
Trainable params: 13,158,787
Non-trainable params: 14,721,730

As the last convolution block of VGGNet is already trained on the custom dataset I want to cut the network at layer:

__________________________________________________________________________________________________
vgg16 (Model)                   (None, 7, 7, 512)    14714688    input_1[0][0]
                                                                 input_2[0][0]
__________________________________________________________________________________________________

and use this as a powerful feature extractor. For this task, I loaded the fine-tuned model:

model = load_model('model.h5')

then tried to create the new model as:

new_model = Model(Input(shape=(img_width, img_height, channels)), model.layers[2].output)

This results in the following error:

`AttributeError: Layer vgg16 has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use `get_output_at(node_index)` instead.`

Please, advise me where I am doing wrong.


Solution

  • I have tried several ways but the following method works perfectly. Instead of creating new model as:

    model = load_model('model.h5')
    new_model = Model(Input(shape=(img_width, img_height, channels)), model.layers[2].output)
    

    I used the following way:

    model = load_model('model.h5')
    sub_model = Sequential()
    for layer in model.get_layer('vgg16').layers:
        sub_model.add(layer)
    

    I hope this will help others.