I'm using this library to create a model to learn graphs. Here is the code (from repository):
import numpy as np
from keras_gcn.backend import keras
from keras_gcn import GraphConv
# feature matrix
input_data = np.array([[[0, 1, 2],
[2, 3, 4],
[4, 5, 6],
[7, 7, 8]]])
# adjacency matrix
input_edge = np.array([[[1, 1, 1, 0],
[1, 1, 0, 0],
[1, 0, 1, 0],
[0, 0, 0, 1]]])
labels = np.array([[[1],
[0],
[1],
[0]]])
data_layer = keras.layers.Input(shape=(None, 3), name='Input-Data')
edge_layer = keras.layers.Input(shape=(None, None), dtype='int32', name='Input-Edge')
conv_layer = GraphConv(units=4, step_num=1, kernel_initializer='ones',
bias_initializer='ones', name='GraphConv')([data_layer, edge_layer])
model = keras.models.Model(inputs=[data_layer, edge_layer], outputs=conv_layer)
model.compile(optimizer='adam', loss='mae', metrics=['mae'])
model.fit([input_data, input_edge], labels)
However, when I run the code I get the following error:
ValueError: Error when checking target: expected GraphConv to have 3 dimensions, but got array with shape (4, 1)
while the shape of labels is (1, 4, 1)
You should encode your labels using onehot-encoder, something like the following:
lables = np.array([[[0, 1],
[1, 0],
[0, 1],
[1, 0]]])
Also number of units in GraphConv
layer should be equal to the number of unique labels which is 2 in your case.