Search code examples
python-3.xpytorchmetricsconfusion-matrix

Faster method of computing confusion matrix?


I am computing my confusion matrix as shown below for image semantic segmentation which is a pretty verbose approach:

def confusion_matrix(preds, labels, conf_m, sample_size):
    preds = normalize(preds,0.9) # returns [0,1] tensor
    preds = preds.flatten()
    labels = labels.flatten()
    for i in range(len(preds)):
        if preds[i]==1 and labels[i]==1:
            conf_m[0,0] += 1/(len(preds)*sample_size) # TP
        elif preds[i]==1 and labels[i]==0:
            conf_m[0,1] += 1/(len(preds)*sample_size) # FP
        elif preds[i]==0 and labels[i]==0:
            conf_m[1,0] += 1/(len(preds)*sample_size) # TN
        elif preds[i]==0 and labels[i]==1:
            conf_m[1,1] += 1/(len(preds)*sample_size) # FN 
    return conf_m

In the prediction loop:

conf_m = torch.zeros(2,2) # two classes (object or no-object)
for img,label in enumerate(data):
    ...
    out = Net(img)
    conf_m = confusion_matrix(out, label, len(data))
    ...

Is there a faster approach (in PyTorch) to efficiently calculate the confusion matrix for a sample of inputs for image semantic segmentation?


Solution

  • I use these 2 functions to calc confusion matrix (as it defined in sklearn):

    # rewrite sklearn method to torch
    def confusion_matrix_1(y_true, y_pred):
        N = max(max(y_true), max(y_pred)) + 1
        y_true = torch.tensor(y_true, dtype=torch.long)
        y_pred = torch.tensor(y_pred, dtype=torch.long)
        return torch.sparse.LongTensor(
            torch.stack([y_true, y_pred]), 
            torch.ones_like(y_true, dtype=torch.long),
            torch.Size([N, N])).to_dense()
    
    # weird trick with bincount
    def confusion_matrix_2(y_true, y_pred):
        N = max(max(y_true), max(y_pred)) + 1
        y_true = torch.tensor(y_true, dtype=torch.long)
        y_pred = torch.tensor(y_pred, dtype=torch.long)
        y = N * y_true + y_pred
        y = torch.bincount(y)
        if len(y) < N * N:
            y = torch.cat(y, torch.zeros(N * N - len(y), dtype=torch.long))
        y = y.reshape(N, N)
        return y
    
    y_true = [2, 0, 2, 2, 0, 1]
    y_pred = [0, 0, 2, 2, 0, 2]
    
    confusion_matrix_1(y_true, y_pred)
    # tensor([[2, 0, 0],
    #         [0, 0, 1],
    #         [1, 0, 2]])
    
    

    Second function is faster in case of small number of classes.

    %%timeit
    confusion_matrix_1(y_true, y_pred)
    # 102 µs ± 30.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
    
    %%timeit
    confusion_matrix_2(y_true, y_pred)
    # 25 µs ± 149 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)