I'm currently trying to animate a plot using gganimate but am struggling to figure out how I would rotate through multiple y variables. The following data was collected from twitter scraping which allowed me to calculate a "sentiment score" based on the tweets following the recent Democratic debate. The goal here is to create an animated plot that eases through all 10 sentiment scores and adjusts the ggplot for each candidate. Is this possible with gganimate?
structure(
list(
candidate = c("warren", "booker", "yang", "harris", "biden", "sanders", "buttigieg"),
anger = c(162, 216, 193, 74, 451, 290, 114),
anticipation = c(570, 492, 401, 205, 360, 419, 499),
disgust = c(94, 75, 52, 61, 202, 81, 69),
fear = c(245, 241, 119, 117, 271, 251, 102),
joy = c(574, 525, 279, 181, 214, 319, 183),
sadness = c(237, 161, 138, 106, 406, 157, 251),
surprise = c(104, 191, 176, 106, 255, 343, 123),
trust = c(741, 749, 460, 325, 593, 574, 410),
negative = c(540, 317, 253, 205, 715, 360, 469),
positive = c(989, 1202, 857, 510, 751, 790, 701)
),
class = c("spec_tbl_df", "tbl_df", "tbl", "data.frame"),
row.names = c(NA, -7L),
spec = structure(
list(
cols = list(
candidate = structure(list(), class = c("collector_character", "collector")),
anger = structure(list(), class = c("collector_double", "collector")),
anticipation = structure(list(), class = c("collector_double", "collector")),
disgust = structure(list(), class = c("collector_double", "collector")),
fear = structure(list(), class = c("collector_double", "collector")),
joy = structure(list(), class = c("collector_double", "collector")),
sadness = structure(list(), class = c("collector_double", "collector")),
surprise = structure(list(), class = c("collector_double", "collector")),
trust = structure(list(), class = c("collector_double", "collector")),
negative = structure(list(), class = c("collector_double", "collector")),
positive = structure(list(), class = c("collector_double", "collector"))),
default = structure(list(), class = c("collector_guess", "collector")), skip = 1
),
class = "col_spec")
)
Here is the script I currently have written:
library ("ggplot2")
library("dplyr")
library("tidyverse")
library("plotly")
library("viridis")
library("gganimate")
#Read in CSV Files
sentiment_score <- read_csv('C:\\Users\\tdago\\Documents\\R\\Sentiment_Scores.csv')
sentiment_score_hashtag <- read_csv('C:\\Users\\tdago\\Documents\\R\\Sentiment_Scores_hashtag.csv')
#Tidy Data
sentiment_score <- sentiment_score %>%
rename(candidate = X1)
sentiment_score_hashtag <-sentiment_score_hashtag %>%
rename(candidate = X1)
#Create Charts for Comparison
ggplot(data=sentiment_score,aes(x = candidate, y=anger))+
geom_bar(aes(fill=candidate),stat = "identity")+
theme(legend.position="none")+
xlab("Presidential Candidates")+ylab("Scores")+ggtitle("Anger") +
labs(x = "", y = "{sentiment"}) +
ease_aes('linear')
Note: the sentiment_score object is the only one that is being used in this specific chart. sentiment_score_hashtag is a similar data frame that contains sentiment scores based on a different search.
I don't think you can rotate through Y variables with gganimate. Is easier to transform your data from wide to long format (see this question for a comprehensive list of methods to achieve this). I will go with the tidy way, using tidyr::pivot_longer
:
> sentiment_score %>%
+ pivot_longer(-candidate, names_to = 'sentiment')
# A tibble: 70 x 3
candidate sentiment value
<chr> <chr> <dbl>
1 warren anger 162
2 warren anticipation 570
3 warren disgust 94
4 warren fear 245
5 warren joy 574
6 warren sadness 237
7 warren surprise 104
8 warren trust 741
9 warren negative 540
10 warren positive 989
# … with 60 more rows
>
This way, you can use easily sentiment as a state variable in gganimate
, and follow the nice gganimate getting started manual.
Here is an example of the possibilities:
library ("ggplot2")
library("dplyr")
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library("tidyverse")
# library("plotly")
# library("viridis")
library("gganimate")
#Tidy Data
sentiment_score <- structure(
list(
candidate = c("warren", "booker", "yang", "harris", "biden", "sanders", "buttigieg"),
anger = c(162, 216, 193, 74, 451, 290, 114),
anticipation = c(570, 492, 401, 205, 360, 419, 499),
disgust = c(94, 75, 52, 61, 202, 81, 69),
fear = c(245, 241, 119, 117, 271, 251, 102),
joy = c(574, 525, 279, 181, 214, 319, 183),
sadness = c(237, 161, 138, 106, 406, 157, 251),
surprise = c(104, 191, 176, 106, 255, 343, 123),
trust = c(741, 749, 460, 325, 593, 574, 410),
negative = c(540, 317, 253, 205, 715, 360, 469),
positive = c(989, 1202, 857, 510, 751, 790, 701)
),
class = c("spec_tbl_df", "tbl_df", "tbl", "data.frame"),
row.names = c(NA, -7L),
spec = structure(
list(
cols = list(
candidate = structure(list(), class = c("collector_character", "collector")),
anger = structure(list(), class = c("collector_double", "collector")),
anticipation = structure(list(), class = c("collector_double", "collector")),
disgust = structure(list(), class = c("collector_double", "collector")),
fear = structure(list(), class = c("collector_double", "collector")),
joy = structure(list(), class = c("collector_double", "collector")),
sadness = structure(list(), class = c("collector_double", "collector")),
surprise = structure(list(), class = c("collector_double", "collector")),
trust = structure(list(), class = c("collector_double", "collector")),
negative = structure(list(), class = c("collector_double", "collector")),
positive = structure(list(), class = c("collector_double", "collector"))),
default = structure(list(), class = c("collector_guess", "collector")), skip = 1
),
class = "col_spec")
)
#Create Charts for Comparison
candidates_plot <- sentiment_score %>%
pivot_longer(-candidate, names_to = 'sentiment') %>%
ggplot(aes(x = candidate, y=value))+
geom_bar(aes(fill=candidate, group = sentiment),stat = "identity")+
scale_y_continuous(expand = c(0,0), limits = c(0,1250)) +
theme(legend.position="none")#+
# xlab("Presidential Candidates")+ylab("Scores")+ggtitle("{sentiment}") +
# labs(x = "Presidential Candidates", y = "{sentiment}")
anim <- candidates_plot +
transition_states(
sentiment, 2, 2
) +
enter_fade() + enter_drift(y_mod = -500) +
exit_shrink() + exit_drift(y_mod = -500) +
labs(
title = '{closest_state}',
x = "Presidential Candidates", y = "{closest_state}"
)
animate(
anim, width = 500, height = 300, res = 90
)
Created on 2019-11-25 by the reprex package (v0.3.0)