I have a data set of different orders and the quantity of that order for customers. I want to remove ordertype == "cap" from all the rows and the corresponding quantity for that order form the respective quantity column and replace it with the next values that does not correspond to "cap"
#INPUT DATA
custID <- data.frame(c(1,2,3,4,5))
OrderType_1 <- data.frame(c("ball", "pen", "ball", "shuttle", "pen"))
OrderType_2 <- data.frame(c("pen", NA, "cap", "cap", "pen"))
OrderType_3 <- data.frame(c("cap", NA, "cap", "cap", NA))
OrderType_4 <- data.frame(c("shuttle", NA, "ball", "cap", NA))
OrderType_5 <- data.frame(c("pen", NA, "cap", "ball", NA))
QUANTITY_1 <- data.frame(c(2,3,4,5,6))
QUANTITY_2 <- data.frame(c(2, NA, 1, 3, 3))
QUANTITY_3 <- data.frame(c(3,NA,5,6,NA))
QUANTITY_4 <- data.frame(c(2,NA,3,5,NA))
QUANTITY_5 <- data.frame(c(2,NA,2,3, NA))
report <- cbind(custID, OrderType_1, OrderType_2, OrderType_3, OrderType_4,
OrderType_5, QUANTITY_1, QUANTITY_2, QUANTITY_3, QUANTITY_4, QUANTITY_5 )
report <- as.data.frame(report)
colnames(report) <- c("CustID", "OrderType_1", "OrderType_2", "OrderType_3",
"OrderType_4", "OrderType_5", "QUANTITY_1", "QUANTITY_2", "QUANTITY_3",
"QUANTITY_4", "QUNATITY_5")
This is how the output should look after removing "cap" and the corresponding quantity value..
#OUTPUT DATA TYPE
custID <- data.frame(c(1,2,3,4,5))
OrderType_1 <- data.frame(c("ball", "pen", "ball", "shuttle", "pen"))
OrderType_2 <- data.frame(c("pen", NA, "ball", "ball", "pen"))
OrderType_3 <- data.frame(c("shuttle", NA, NA, NA, NA))
OrderType_4 <- data.frame(c("pen", NA, NA, NA, NA))
OrderType_5 <- data.frame(c(NA, NA, NA, NA, NA))
QUANTITY_1 <- data.frame(c(2,3,4,5,6))
QUANTITY_2 <- data.frame(c(2, NA, 3, 3, 3))
QUANTITY_3 <- data.frame(c(2,NA,NA,NA,NA))
QUANTITY_4 <- data.frame(c(2, NA,NA,5,NA))
QUANTITY_5 <- data.frame(c(NA,NA,NA,NA,NA))
report_1 <- cbind(custID, OrderType_1, OrderType_2, OrderType_3,
OrderType_4, OrderType_5, QUANTITY_1, QUANTITY_2, QUANTITY_3, QUANTITY_4,
QUANTITY_5 )
report_1 <- as.data.frame(report_1)
colnames(report_1) <- c("CustID", "OrderType_1", "OrderType_2",
"OrderType_3",
"OrderType_4", "OrderType_5", "QUANTITY_1", "QUANTITY_2", "QUANTITY_3",
"QUANTITY_4", "QUNATITY_5")
Maybe using tidyverse
you could approach it this way:
This data is easier to manipulate in long form using pivot_longer
. You can filter out the rows you don't want (removing both the OrderType
as well as the QUANTITY
). Then pivot_wider
if that is the desired format, filling in NA
as needed). I hope this is helpful.
Edit: For each CustID
I needed to reorder after filtering out unwanted orders.
library(tidyverse)
report %>%
pivot_longer(cols = -CustID,
names_to = c(".value", "order"),
names_sep = "_") %>%
filter(OrderType != "cap") %>%
group_by(CustID) %>%
mutate(neworder = row_number()) %>%
pivot_wider(id_cols = CustID,
names_from = c(neworder, neworder),
names_sep = "_",
values_from = c(OrderType, QUANTITY))
# A tibble: 5 x 9
# Groups: CustID [5]
CustID OrderType_1 OrderType_2 OrderType_3 OrderType_4 QUANTITY_1 QUANTITY_2 QUANTITY_3 QUANTITY_4
<dbl> <fct> <fct> <fct> <fct> <dbl> <dbl> <dbl> <dbl>
1 1 ball pen shuttle pen 2 2 2 2
2 2 pen NA NA NA 3 NA NA NA
3 3 ball ball NA NA 4 3 NA NA
4 4 shuttle ball NA NA 5 3 NA NA
5 5 pen pen NA NA 6 3 NA NA